1.1 Introduction to Systems of Linear Equations

CHAPTER 1: SYSTEMS OF LINEAR EQUATIONS AND MATRICES

1.1 Introduction to Systems of Linear Equations

(a) Thisisalinear equation in x4, x,, and xs.

(b) Thisis nota linear equation in x4, x,, and x5 because of the term x; x5.

(c) We can rewrite this equation in the form x; + 7x, — 3x3 = 0 therefore it is a linear equation in

X1, X5, and x3.

(d) Thisis nota linear equation in x4, x,, and x5 because of the term xj 2.

(e) Thisis nota linear equation in x4, x;, and x3 because of the term x;

3/5

(f) Thisis alinear equation in x4, x5, and x5.

(a) Thisisalinear equation in x and y.

(b) This is nota linear equation in x and y because of the terms 2x*/* and 3,/y.

(c) Thisisalinear equation in x and y.

(d) Thisis notalinear equation in x and y because of the term %cos X.

(e) Thisisnotalinear equation in x and y because of the term xy.

(f) We can rewrite this equation in the form —x + y = —7 thus it is a linear equation in x and y.
@ anx; + apx b,
az1X1 + axpx; = b
(b) anix; + apx; + apzxs = by
az1X1  + azx; + azxs = by
azi1xqy + asx; + azzxs = by
(€) anx; + apx; + azxs + apxy = by
az1X1  + AzXx; + AzzXs + aAxXxy = by
(a) (b) (o)
[a11 ai2 bl] a;1 ;2 a3 by [au A2 Q413 Q14 b1]
az1 Az b az1 Az Qa3 by Az1 Az Q3 Az by
az; asy dsz bs
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(a) (b)
2x4 0 3x4 — 2x3 = 5
3¢ — 4x, = 0 7x1 + x; + 4x3 = -3
X, = 1 - 2x, + x5 = 7
() (b)
3y — X3 — X4 -1 3x1 + x3 — 4x, = 3
5x; + 2x, — 3x4 -6 —4x, + 4x3 + x4, = -3
—x; + 3x; - 2x4 = -9
- Xy = -2
() (b) (9
[—2 6] 6 -1 3 4] [ 0 2 0 -3 1 0]
3 8 0 5 -1 1 -3 -1 1 0 0 -1
9 -3 6 2 -1 2 =3 6
() (b) (9
3 -2 -1 2 0 2 1 1 0 0 1
s faa oo
7 3 2 6 1 -1 0 0 0 1 3

The values in (a), (d), and (e) satisfy all three equations - these 3-tuples are solutions of the system.

The 3

-tuples in (b) and (c) are not solutions of the system.

The values in (b), (d), and (e) satisfy all three equations - these 3-tuples are solutions of the system.

The 3
(a)

(b)

-tuples in (a) and (c) are not solutions of the system.

We can eliminate x from the second equation by adding —2 times the first equation to the
second. This yields the system

3x — 2y = 4

0 =1
The second equation is contradictory, so the original system has no solutions. The lines
represented by the equations in that system have no points of intersection (the lines are
parallel and distinct).

We can eliminate x from the second equation by adding —2 times the first equation to the
second. This yields the system

2x — 4y = 1

0 =0
The second equation does not impose any restriction on x and y therefore we can omit it. The
lines represented by the original system have infinitely many points of intersection. Solving the



12.

13.

1.1 Introduction to Systems of Linear Equations

) . : 1 . . ,
first equation for x we obtain x = >t 2y. This allows us to represent the solution using

parametric equations

—1+2t =t
x=3 , Y=

where the parameter t is an arbitrary real number.

(c) We can eliminate x from the second equation by adding —1 times the first equation to the
second. This yields the system

x — 2y =0
- 2y = 8
From the second equation we obtain y = —4. Substituting —4 for y into the first equation
results in x = —8. Therefore, the original system has the unique solution

x=-8, y=-4
The represented by the equations in that system have one point of intersection: (—8, —4).

We can eliminate x from the second equation by adding —2 times the first equation to the second.
This yields the system

2x — 3y = a
0 = b—2a
If b—2a =0 (i.e, b = 2a) then the second equation imposes no restriction on x and y;

consequently, the system has infinitely many solutions.

If b—2a+ 0 (i.e, b # 2a) then the second equation becomes contradictory thus the system has no
solutions.

There are no values of a and b for which the system has one solution.

(@) Solving the equation for x we obtain x = % + gy therefore the solution set of the original
equation can be described by the parametric equations
5 + > t t
X =— =t, =
7t70 Y

where the parameter t is an arbitrary real number.

(b) Solving the equation for x; we obtain x; = % + sz - §x3 therefore the solution set of the
original equation can be described by the parametric equations
7 N 5 4
X1==+=r—=5, X=T, X3=S§

where the parameters r and s are arbitrary real numbers.

(c) Solving the equation for x; we obtain x; = — % + %xz — ng + %x4 therefore the solution set of

the original equation can be described by the parametric equations

3
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(d

(a)

(b)

(9

(d

()

1 1 5 3
x1:_§+ZT_§S+Ztv Xy =T, X3=S5, X=1

where the parameters r, s, and t are arbitrary real numbers.

: . . 8 2 1 4 :
Solving the equation for v we obtain v = WXty —3z therefore the solution set of the
original equation can be described by the parametric equations

4
V==t; —=t, +=t; —=t,, W=t x=10,, =t, zZz=t
3liT 32Tzl T3 1 2 Y 3 4

where the parameters t,, t,, t3, and t, are arbitrary real numbers.

Solving the equation for x we obtain x = 2 — 10y therefore the solution set of the original
equation can be described by the parametric equations

x=2-10t, y=t
where the parameter t is an arbitrary real number.

Solving the equation for x; we obtain x; = 3 — 3x, + 12x; therefore the solution set of the
original equation can be described by the parametric equations

Xy =3—-3r+12s, x, =71, Xx3=S
where the parameters r and s are arbitrary real numbers.

: . : 1 3 1 .
Solving the equation for x; we obtain x; =5 — SX2 = X3~ X therefore the solution set of

the original equation can be described by the parametric equations

where the parameters 7, s, and t are arbitrary real numbers.

Solving the equation for v we obtain v = —w — x 4+ 5y — 7z therefore the solution set of the
original equation can be described by the parametric equations
v=—t1—t2+5t3—7t4, W=t1, x=t2, y=t3, Z=t4,

where the parameters t4, t,, t3, and t, are arbitrary real numbers.
We can eliminate x from the second equation by adding —3 times the first equation to the
second. This yields the system

2x — 3y =1

0 =0

The second equation does not impose any restriction on x and y therefore we can omit it.
Solving the first equation for x we obtain x = % + gy. This allows us to represent the solution

using parametric equations

=13 =t
X=373h Y=

where the parameter t is an arbitrary real number.
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We can see that the second and the third equation are multiples of the first: adding —3 times the
first equation to the second, then adding the first equation to the third yields the system

x1+3x2_X3:_4’
0=0
0=0

The last two equations do not impose any restriction on the unknowns therefore we can omit
them. Solving the first equation for x; we obtain x; = —4 — 3x, + x3. This allows us to
represent the solution using parametric equations

Xx1=—4—-3r+s, x;,=1, X3=S5
where the parameters r and s are arbitrary real numbers.

We can eliminate x; from the first equation by adding —2 times the second equation to the
first. This yields the system

0=0
—4

3x1 + x5
The first equation does not impose any restriction on x; and x, therefore we can omit it. Solving
the second equation for x; we obtain x; = — g - §x2. This allows us to represent the solution
using parametric equations

4 1 . .
X =—=—=t Xp=
1 373 2
where the parameter t is an arbitrary real number.
We can see that the second and the third equation are multiples of the first: adding —3 times the

first equation to the second, then adding 2 times the first equation to the third yields the system

2x—y+2z=-4
0=0
0=0
The last two equations do not impose any restriction on the unknowns therefore we can omit

them. Solving the first equation for x we obtain x = -2 + %y — z. This allows us to represent

the solution using parametric equations

x=—2+§r—s, y=1, Z=S
where the parameters r and s are arbitrary real numbers.
1 -7 8 8
Add 2 times the second row to the first to obtain |2 -3 3 2
0 2 -3 1

1 3 -8 3
Add the third row to the first to obtain [2 -9 3 2]
1 4 -3 3
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(a)

(b)

(a)

(b)

(a)

1 4 -3 3
(another solution: interchange the first row and the third row to obtain [2 -9 3 2]).
0 -1 -5 0

L 1 2 -3 4
Multiply the first row by S to obtain | 7 1 4 3|
-5 4

2 7
1 -1 -3 6
Add the third row to the first to obtain 3 -1 8 1
—6 3 -1 4

1 -2 -18 0
(another solution: add —2 times the second row to the first to obtain [ 3 -1 8 1]).
-6 3 -1 4

. ' 1 k —4 .
Add —4 times the first row to the second to obtain [0 8 4k 18] which corresponds to the
system
x + ky =—4
(8—4k)y =18

If k = 2 then the second equation becomes 0 = 18, which is contradictory thus the system
becomes inconsistent.

If k # 2 then we can solve the second equation for y and proceed to substitute this value into
the first equation and solve for x.

Consequently, for all values of k # 2 the given augmented matrix corresponds to a consistent
linear system.

Add —4 times the first row to the second to obtain [(1) 8 —k4k _(1)] which corresponds to the
system
x + ky=-1
(8—4k)y=0

If k = 2 then the second equation becomes 0 = 0, which does not impose any restriction on x
and y therefore we can omit it and proceed to determine the solution set using the first
equation. There are infinitely many solutions in this set.

If k # 2 then the second equation yields y = 0 and the first equation becomes x = —1.
Consequently, for all values of k the given augmented matrix corresponds to a consistent linear
system.

3 —4 k

0 0 2k + 5] which corresponds to the

Add 2 times the first row to the second to obtain [
system

3x—4y =k

0=2k+5
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5 . : . I
If k =-— > then the second equation becomes 0 = 0, which does not impose any restriction on

x and y therefore we can omit it and proceed to determine the solution set using the first
equation. There are infinitely many solutions in this set.

5 Co . . .
If k+— > then the second equation is contradictory thus the system becomes inconsistent.

Consequently, the given augmented matrix corresponds to a consistent linear system only when

k=-2
2

Add the first row to the second to obtain [4 _IIC_ K é _él which corresponds to the system
kx + y = -2
4+ k)x = 0
If k = —4 then the second equation becomes 0 = 0, which does not impose any restriction on

x and y therefore we can omit it and proceed to determine the solution set using the first
equation. There are infinitely many solutions in this set.

If k # —4 then the second equation yields x = 0 and the first equation becomes y = —2.

Consequently, for all values of k the given augmented matrix corresponds to a consistent linear
system.

Substituting the coordinates of the first point into the equation of the curve we obtain

yi=ax?+bx; +c

Repeating this for the other two points and rearranging the three equations yields

xta+xb+c=y
xia+xb+c=y,
xia+x3b+c =y,
Xt
2

X 1 »n

This is a linear system in the unknowns a, b, and c. Its augmented matrixis |x5 x, 1 y,|

x% x3 1 y3

Solving the first equation for x; we obtain x; = ¢ — kx, therefore the solution set of the original

equation can be described by the parametric equations

xg=c—kt, x,=t

where the parameter t is an arbitrary real number.

Substituting these into the second equation yields

c—kt+lt=d

which can be rewritten as

c—kt=d-1lt
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This equation must hold true for all real values t, which requires that the coefficients associated with
the same power of t on both sides must be equal. Consequently,c = d and k = L.

(a) The system has no solutions if either

e atleast two of the three lines are parallel and distinct or

e each pair of lines intersects at a different point (without any lines being parallel)
(b) The system has exactly one solution if either

e two lines coincide and the third one intersects them or

o all three lines intersect at a single point (without any lines being parallel)

(c) The system has infinitely many solutions if all three lines coincide.

2x + 3y + z = 7
2x + y + 3z = 9
4x + 2y + 5z = 16

We set up the linear system as discussed in Exercise 21:

1%a + 1b + ¢ = 1 a + b + ¢ =1
22a + 2b + ¢ = 4 ie. 4a + 2b + ¢ = 4
(-D?a — 1b + ¢ = 1 a — b + ¢ =1

One solution is expected, since exactly one parabola passes through any three given points (x4, y;),
(%2,¥2), (x3,vy3) if x4, x,, and x5 are distinct.

x +y + z = 12
2x + y + 2z = 5
—X + z = 1

True-False Exercises

()
(b)
(0
(d)

(e)

(f)
(8)

(h)

True. (0,0, ...,0) is a solution.
False. Only multiplication by a nonzero constant is a valid elementary row operation.
True. If k = 6 then the system has infinitely many solutions; otherwise the system is inconsistent.

True. According to the definition, a;x; + a,x, + -+ + a,x,, = b is alinear equation if the a's are not
all zero. Let us assume a; # 0. The values of all x's except for x; can be set to be arbitrary parameters,

and the equation can be used to express x; in terms of those parameters.

False. E.g. if the equations are all homogeneous then the system must be consistent. (See True-False
Exercise (a) above.)

False. If ¢ # 0 then the new system has the same solution set as the original one.

True. Adding —1 times one row to another amounts to the same thing as subtracting one row from
another.

False. The second row corresponds to the equation 0 = —1, which is contradictory.
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1.2 Gaussian Elimination

(a)

(b)

(9

(d)

(e

U

(8)

(a)

(b)

(9

(d)

(e)

M

(8)

This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row
echelon form.

This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row
echelon form.

This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row
echelon form.

This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row
echelon form.

This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row
echelon form.

This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row
echelon form.

This matrix has properties 1-3 but does not have property 4: the second column contains a
leading 1 and a nonzero number (—7) above it. The matrix is in row echelon form but not
reduced row echelon form.

This matrix has properties 1-3 but does not have property 4: the second column contains a
leading 1 and a nonzero number (2) above it. The matrix is in row echelon form but not reduced
row echelon form.

This matrix does not have property 1 since its first nonzero number in the third row (2) is nota
1. The matrix is not in row echelon form, therefore it is not in reduced row echelon form either.

This matrix has properties 1-3 but does not have property 4: the third column contains a
leading 1 and a nonzero number (4) above it. The matrix is in row echelon form but not reduced
row echelon form.

This matrix has properties 1-3 but does not have property 4: the second column contains a
leading 1 and a nonzero number (5) above it. The matrix is in row echelon form but not reduced
row echelon form.

This matrix does not have property 2 since the row that consists entirely of zeros is not at the
bottom of the matrix. The matrix is not in row echelon form, therefore it is not in reduced row
echelon form either.

This matrix does not have property 3 since the leading 1 in the second row is directly below the
leading 1 in the first (instead of being farther to the right). The matrix is not in row echelon
form, therefore it is not in reduced row echelon form either.

This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row
echelon form.
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3. (@)

(b)

(9

(d

4. (a)

The linear system

x — 3y + 4z =7 x = 7+3y—4z
y + 2z = 2 can be rewritten as y = 2-2z
z = 5 z =5
and solved by back-substitution:
z=5
y=2-2(5)=-8
x=74+3(-8)—4(5) =-37
therefore the original linear system has a unique solution: x = —37, y = -8, z = 5.
The linear system
w + 8 — 5z = 6 w = 6-—8y+5z
x + 4y — 9z = 3 can be rewritten as x = 3—4y+9z
y + z = 2 y = 2-z
Let z =t. Then
y=2-t
x=3-4(2—-t)+9t=-5+13t
w=6-8(2—-t)+5t=-10+ 13t
therefore the original linear system has infinitely many solutions:
w=-10+13t,x =-5+13t,y=2—-t,z=t
where t is an arbitrary value.
The linear system
Xy + 7x; — 2x3 — 8xg = -3
X3 + x4 + 6x5 = 5
X4y + 3x5 = 9
0 = 0
can be rewritten: x; = —3 — 7x, + 2x3 + 8x5, X3 =5 — x4 — 6X5, x4 =9 — 3xs.

Let x, = sand xg = t. Then

x4=9_3t
X3 =5—(9—3t)—6t=—4—3¢
X, = —3—7s+2(—4—3t) +8t = —11 — 7s + 2t

therefore the original linear system has infinitely many solutions:
xy=—11—-7s+2t, x5=5, x3=—4—-3t, x4, =9-3t, x5=1¢
where s and t are arbitrary values.

The system is inconsistent since the third row of the augmented matrix corresponds to the
equation

0x+0y+0z=1.

A unique solution: x =-3, y=0, z=7.
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(b) Infinitely many solutions: w =8+ 7t, x =2 —3t, y = =5 —t,z =t where t is an arbitrary
value.

(c) Infinitely many solutions: v=—-24+6s—3t, w=s, x =7 —4t, y =8 —5t, z=1t where s
and t are arbitrary values.

(d) The system is inconsistent since the third row of the augmented matrix corresponds to the
equation

0x +0y+0z=1.

1 1 2 8]
[—1 -2 3 1 <«——— The augmented matrix for the system.
3 =7 4 10
1 1 2 8
0 -1 5 9 <«——— The first row was added to the second row.
3 =7 4 10
[1 1 2 8
0 -1 5 9 <4——— -3 times the first row was added to the third row.
0 —-10 -2 -14
[1 1 2 8
0 1 -5 -9 <«——— The second row was multiplied by —1.
0 —-10 -2 -14
1 1 2 8]
0 1 -5 -9 <«——— 10 times the second row was added to the third row.
0 0 —-52 -104]
1 1 2 8]
0 1 -5 -9 <4—— The third row was multiplied by —é .
0 0 1 A

The system of equations corresponding to this augmented matrix in row echelon form is

xl + xZ + 2x3 = 8 xl = 8 - xz - 2x3
X, — bxg = -9 and can be rewritten as X, = —945x3
X3 = 2 x3 = 2

Back-substitution yields

x3:2
X, =-9+5(2) =1
x,=8-1-2(2)=3

The linear system has a unique solution: x; = 3, x, =1, x3 = 2.

[ 2 2 2 0]
-2 5 2 1 <4——— The augmented matrix for the system.
8 1 4 -1
1 1 1 0]
-2 5 2 1 <4——— The first row was multiplied by % .
[ 8 1 4 -1
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1 1 1 0]

0 7 4 1 <4——— 2 times the first row was added to the second row.
8 1 4 -1l
[1 1 1 0]

0 7 4 1 <4——— —8 times the first row was added to the third row.
0 -7 —4 -1l
[1 1 1 0]

4 1 o 1
0 1 - - <4——— The second row was multiplied by >

0 -7 —4 -—1]
1 1 1 0]
4 1

0 1 - <4——— 7 times the second row was added to the third row.
0 0 0 oOf

The system of equations corresponding to this augmented matrix in row echelon form is

x; + x; + x3 = 0
N 1
Xy 7 X3 = 7
0 =0
Solve the equations for the leading variables
X1 = "Xz~ X3
1 4
X2 = 7 7x3
then substitute the second equation into the first
1 3
X1 = — 7 - 7x3
1 4
X2 = 7 7x3

If we assign x; an arbitrary value t, the general solution is given by the formulas

w
|
o))
o
o

<4—— The first row was added to the third row.

[EnN
|
N
o
o

1 3 1 4
x1=—§—§t, xz=§—7t, X3 =t

[ 1 -1 2 -1 -1

2 1 -2 -2 =2 . ey
-1 2 _4 1 1 — e augmented matrix for the system.
| 3 0 0 -3 -3
[ 1 -1 2 -1 -1
_2 g :2 2 2 <4—— —2 timesthe first row was added to the second row.
| 3 0 0 -3 -3

1 -1 2 -1 -1

0

0

3

0 0 -3 -3i
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1 -1 2 -1 -1

8 i :g 8 8 <4+——— 3 times the first row was added to the fourth row.
0 3 —6 0 0

1 -1 2 -1 -1

8 1 :; 8 8 <4—— The second row was multiplied by % .

0 3 —6 0 0

1 -1 2 -1 -1

8 é _é 8 8 <4—— —1timesthe second row was added to the third row.
0 3 —6 0 0

1 -1 2 -1 -1

8 é _S 8 g <4—— —3timesthe second row was added to the fourth row.
0 0 0 0 0

The system of equations corresponding to this augmented matrix in row echelon form is

x —y + 2z — w = -1
y - 2z = 0
0 = 0

0 = 0

Solve the equations for the leading variables

x=—-14+y—-2z+w
y =2z

then substitute the second equation into the first

x=—-14+2z-2z4+w=-1+w
y =2z

If we assign z and w the arbitrary values s and ¢, respectively, the general solution is given by the
formulas

x=-1+t, y=2s, z=s, Ww=t

)}
I
w
I

<4—— The augmented matrix for the system.

<4— Thefirst and second rows were interchanged.

I
—_
I

<4——— The first row was multiplied by % .

aNO - ANO W oW o
|
N DN NOY O
w
UGlFRrwin UL N UGN -

13



14 Chapter 1: Systems of Linear Equations and Matrices

1 2 -1 -
0 =2 3 <+——— —6 times the first row was added to the third row.
0 —6 9
1 2 -1 -
0 1 _3 _ <«—— The second row was multiplied by —%.
2
0 -6 9

I
[EN
I

<4—— 6 timesthe second row was added to the third row.

|
U
|

<4——— The third row was multiplied by %.

RHNlRrwIN INIRWIN pwlr—xwlq O R wiN

S O B O O =
S B, N O = N
(e}

The system of equations corresponding to this augmented matrix in row echelon form

+ 2b = 2
a c = 3
b 3 _ 1
2¢ T 72
0 = 1
is clearly inconsistent.
1 1 2 8]
9. -1 -2 3 1 <«——— The augmented matrix for the system.
3 =7 4 10l
1 1 2 8
0 -1 5 9 <——— The first row was added to the second row.
3 =7 4 10l
[1 1 2 8]
0o -1 5 9 <«——— -3 times the first row was added to the third row.
0 —-10 -2 —14]
[1 1 2 8]
0 1 -5 -9 <4——— The second row was multiplied by —1.
0 —-10 -2 —14]
1 1 2 8]
0 1 -5 -9 <4——— 10 times the second row was added to the third row.
0 0 =52 -104]
1 1 2 8
0 1 -5 -9 <«——— The third row was multiplied by —é.
0 0 1 2]
1 1 2 8]
01 0 1 <4—— 5 times the third row was added to the second row.
0 0 1 2]
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SR O ORF

_OoO O Rk OO

[ 2 2 2 0]

-2 5 2 1

L 8 1 4 -1

1 1 1 0]

-2 5 2 1

[ 8 1 4 -1

1 1 1 0]

07 4 1

8 1 4 -1l
1 1 1 0]

o 7 4 1
0 -7 —4 -1
[1 1 1 0]

0o 1 41

7 7
0 -7 —4 -—1|
1 1 1 0]

01 %2

7 7
0 0 0 O
10 2 -]

7 7

1

7 7
0 ol

Infinitely many solutions: x; = —-—=¢, x, =

1 -1 2 -1 -1]
2 1 -2 -2 =2
-1 2 -4 1 1
| 3 0 0 -3 -3
1 -1 2 -1 -1]
0 3 -6 0 O
-1 2 -4 1 1
| 3 0 0 -3 -3

i B el

1.2 Gaussian Elimination

—2 times the third row was added to the first row.

—1 times the second row was added to the first row.

The linear system has a unique solution: x; =3, x, =1, x3 = 2.

The augmented matrix for the system.
The first row was multiplied by %
2 times the first row was added to the second row.

—8 times the first row was added to the third row.

The second row was multiplied by % .

7 times the second row was added to the third row.

—1 times the second row was added to the first row.

1 4

St xg =t where t is an arbitrary value.

The augmented matrix for the system.

—2 times the first row was added to the second row.

15
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[1 —1 2 -1 -1
8 i :g 8 8 <4—— thefirst row was added to the third row.
13 0 0 -3 -3
[1 -1 2 -1 -1
8 i :S 8 8 <4—— —3 timesthe first row was added to the fourth row.
10 3 —6 0 0
[1 —1 2 -1 -—-1]
8 1 :% 8 8 <«——— The second row was multiplied by %
] 3 —6 0 0]
[1 -1 2 -1 -—-1]
8 é _é 8 8 <4—— —1 times the second row was added to the third row.
[0 3 —6 0 0]
[1 -1 2 -1 -1]
8 é _(2) 8 g <4——— —3timesthe second row was added to the fourth row.
10 0 0 0 0]
1 0 0 -1 -1]
8 é _3 8 g <— the second row was added to the first row.
0 0 0 0 0]

The system of equations corresponding to this augmented matrix in row echelon form is

X - w = -1
y - 2z = 0
0 = 0

0O = 0

Solve the equations for the leading variables

x=-14+w
y =2z

If we assign z and w the arbitrary values s and t, respectively, the general solution is given by the
formulas

x=-1+t, y=2s, z=s, w=t

6 -3 =2 <4——— The augmented matrix for the system.

-2 3 1 <4——— Thefirst and second rows were interchanged.

coWwW oowo
I
w
I
!
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N
I
[
|

<4——— The first row was multiplied by % .

[\
[
—_
|

<4—— —6 times the first row was added to the third row.

N
I
—_
I

<4——— The second row was multiplied by — % .

_
|
|
I

O ©C rRr OO R OO ML
|
)
w

|
U
|

<4—— 6times the second row was added to the third row.

I
[N
I

<«—— The third row was multiplied by % .

I
[N
I

1
— Etimes the third row was added to the second row.

O 0o rBr OO0 Rr OO R
oORr N O Fr N O Fr N
I
I
I

2
— ;times the third row was added to the first row.

<4—— —2times the second row was added to the first row.

o
= O O P OO R O wiN ENIRWwIN OINIRWIN I&DNlp—nwlt\? O RPwin Ul R wiN

o oRr o o R
O RO O RN

The last row corresponds to the equation
0a+0b+0c=1
therefore the system is inconsistent.
(Note: this was already evident after the fifth elementary row operation.)

Since the number of unknowns (4) exceeds the number of equations (3), it follows from Theorem
1.2.2 that this system has infinitely many solutions. Those include the trivial solution and infinitely
many nontrivial solutions.

The system does not have nontrivial solutions.
(The third equation requires x; = 0, which substituted into the second equation yields x, = 0. Both
of these substituted into the first equation resultin x; = 0.)
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15. We present two different solutions.
Solution I uses Gauss-Jordan elimination

2 1 3 0]
1 2 0 0 <4——— The augmented matrix for the system.
0 1 1 Ol
_1 % % 0_
1 2 0 0 <4——— The first row was multiplied by %
0 1 1 Ol
_1 1 3 0_
2 2
0 3 _3 0 <4—— —1 timesthe first row was added to the second row.
2 2
0 1 1 0
1 2 2 0 ,
01 =1 0 <4——— The second row was multiplied by g
0 1 1 Ol
_1 % % 0_
01 -1 0 <4—— —1 times the second row was added to the third row.
0 O 2 0l
_1 % % 0_
. .. 1
01 -1 0 <4——— The third row was multiplied by e
0 O 1 Ol
1 2 0 0
01 0 O < The third row was added to the second row
0 0 1 0 and —ztimes the third row was added to the first row
[1 0 0 O
01 0 O — - % times the second row was added to the first row.
0 0 1 O

Unique solution: x; =0, x, =0, x3 =0.

Solution II. This time, we shall choose the order of the elementary row operations differently in order
to avoid introducing fractions into the computation. (Since every matrix has a unique reduced row
echelon form, the exact sequence of elementary row operations being used does not matter - see part
1 of the discussion “Some Facts About Echelon Forms” on p. 21)

<4—— The augmented matrix for the system.

<«——— Thefirst and second rows were interchanged
(to avoid introducing fractions into the first row).

Em= 5=
_ RN RN
_ WO R OoOWw
cog 2959
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[1 2 0 0]
0 -3 3 0 <4——— -2 times the first row was added to the second row.
10 1 1 Ol
1 2 0 0]
01 -1 0 <«——— The second row was multiplied by — %
0 1 1 Ol
1 2 0 0]
01 -1 0 <«—— -1 times the second row was added to the third row.
0 0 2 0l
1 2 0 0]
01 -1 0 <4—— The third row was multiplied by %
0 0 1 Ol
[1 2 0 O]
01 0 O <4——— The third row was added to the second row.
0 0 1 Ol
(1 0 0 O]
01 0 O <«——— -2 times the second row was added to the first row.
0 0 1 Ol

Unique solution: x; =0, x, =0, x3 =0.

16. We present two different solutions.
Solution I uses Gauss-Jordan elimination

2 =1 =3 0]
-1 2 =3 0 <4——— The augmented matrix for the system.
1 1 4 0l
- 1 _l _E 0_
2 2 .
-1 2 =3 0 <——— Thefirst row was multiplied by >
L 1 1 4 0
.1 _l _E 0_
2 2
0 % _3 0 <4——— Thefirst row was added to the second row.
L1 1 4 0
_1 _l _é 0_
2 2
3 9
0 S 3 0 <4——— —1 times the first row was added to the third row.
o I Z o
2 2 .
_1 _l _E 0_
2 2
0 1 -3 0 <4——— The second row was multiplied by 2
o I Z o
- 2 2 .
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Unique solution: x

(e} = o O — N

|
| w

I
[SSER N

_ O O Bk O O =

=0,y=0,z=0.

S o 99 o o 9 2 o 9 o o

— % times the second row was added to the third row.

The third row was multiplied by 11—0.

3 times the third row was added to the second row

and ; times the third row was added to the first row

1.. .
5 times the second row was added to the first row.

Solution II. This time, we shall choose the order of the elementary row operations differently in order

to avoid introducing fractions into the computation. (Since every matrix has a unique reduced row

echelon form, the exact sequence of elementary row operations being used does not matter - see part

1 of the discussion “Some Facts About Echelon Forms” on p. 21)

[ 2 -1
-1 2
[ 1 1
[ 1 1
-1 2
[ 2 -1
1 1
[0 3
2 -1

1 1

[0 3

0 -3

11

[O 3

0 0

1

0

10

1

0

10

[UnN

|
[
—_

EUNN

|
[N
o

S WERr O WwWpER

NN

[ = NN

Soo oo 209 2098 29038 299 2909

The augmented matrix for the system.

The first and third rows were interchanged

(to avoid introducing fractions into the first row).
The first row was added to the second row.

—2 times the first row was added to the third row.
The second row was added to the third row.

The third row was multiplied by S

10

—1 times the third row was added to the second row.
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[1 1 0 O]
0 3 0 O <4——— —4times the third row was added to the first row.
0 0 1 0l
[1 1 0 0]
01 0 O <4——— The second row was multiplied by %
0 0 1 Ol
[1 0 0 O]
0 1 0 O <4——— —1times the second row was added to the first row.
0 0 1 0l
Unique solution: x =0, y =0, z=0.
3 1 1 1 0]
17. [5 -1 1 -1 0 <4——— The augmented matrix for the system.
P S
[ 3 3 3 <«—— The first row was multiplied by %
5 -1 1 -1
L3 3 50
8 5 8 <4——— —5times the first row was added to the second row.
0 =3 =3 =3 0
133530 :
1 <4——— The second row was multiplied by —=.
01 =120 g
| 4 i
10400 1
1 <4—— —-times the second row was added to the first row.
01 - 120 :
B 4 i
If we assign x; and x, the arbitrary values s and ¢, respectively, the general solution is given by
the formulas
x1=—%s, .xZ=_%S_t, X3 =S, x4=t.
(Note that fractions in the solution could be avoided if we assigned x; = 4s instead, which along with
x, = twouldyield x; = —s, x, = —s —¢t, x3 =4s, x, = t.)
0 1 3 =2 0]
18. 2 1 -4 3 0 )
2 3 2 ~1 0 <4—— The augmented matrix for the system.
|—4 -3 5 —4 0l
1 -4 3 0]
1 3 =2 0 . i
2 3 2 _1 0 <4— Thefirst and second rows were interchanged.
|—4 -3 5 —4 0l
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[1 2 —2 2 o]
2 2
0 1 3 =2 0 ) o 1
<4——— The first row was multiplied by >
| 2 3 2 -1 0
|-—4 -3 5 —4 0
2 -2 2 o]
2 2
0 1 3 =2 0 ) ) )
<4——— —2 timesthe first row was added to the third row
|0 2 6 —4 0 and 4 times the first row was added to the fourth row.
|—0 -1 -3 2 0
1 X -2 2 o
2 2
0 1 3 =2 0
<4—— —2 timesthe second row was added to the third row
0 0 0 0 0 and the second row was added to the fourth row.
0 0 0 0 O
1 0 -2 2 0]
2 2
0 1 3 =2 0 1 ]
— —3 times the second row was added to the first row.
0 0 0 0 0
0 0 0 0 O

If we assign w and x the arbitrary values s and ¢, respectively, the general solution is given by the

formulas
7 5
u=-s—-t, v=-3s+2t, w=s, x=t.
[ 0 2 2 4 0]
19. ; g _i _i 8 <4——— The augmented matrix for the system.

-2 1 3 =2 0l

[ 1 0 -1 -3 0]
g g i 11 g <«——— Thefirst and second rows were interchanged.

-2 1 3 =2 0l
(1 0 —1 -3 0]
8 g g g 8 <4—— —2 times the first row was added to the third row
0 1 1 -8 0 and 2 times the first row was added to the fourth row.
(1 0 -1 -3 0]
8 é ; ; 8 <«——— The second row was multiplied by %
0 1 1 -8 0.
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1 0 -1 -3 0]
0 1 1 2 0 . .
0 0 0 1 0 <4— —3 times the second row was added to the third and
0 0 0 —10 o0 —1 times the second row was added to the fourth row.
1 0 -1 -3 0]
0 1 1 2 0 : )
0 0 0 1 0 <4——— 10 times the third row was added to the fourth row.
0 0 0 0 Ol
1 0 -1 0 O]
8 (1) é 2 8 <4—— —2 timesthe third row was added to the second and
0 0 00 0 3 times the third row was added to the first row.

If we assign y an arbitrary value t the general solution is given by the formulas

w=t x=-t, y=t z=0.

[1 3 0 1 0
|1 4 2 0 0
20. | 0 -2 -2 -1 0 <4——— The augmented matrix for the system.

lZ —4 1 1 0
1 -2 -1 1 0

1 3 0 1 01

0 1 2 -1 0

0 -2 -2 -1 0 <4——— —1 times the first row was added to the second row,

0 -10 1 -1 0 —2 times the first row was added to the fourth row,

0 -5 -1 0 0O and —1 times the first row was added to the fifth row.
1 3 0 1 0

01 2 -1 0

0 0 2 -3 0 <«——— 2 times the second row was added to the third row,

0 0 21 —-11 O 10 times the second row was added to the fourth row,
0 0 9 -5 0 and 5 times the second row was added to the fifth row.
1 3 0 1 0

01 2 -1 0

0 0 1 —% 0 <4——— The third row was multiplied by %

0 0 21 —-11 O
0 0 9 -5 0O

23
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01 2 -1 0

3
001 - 2 0 <4——— —21 times the third row was added to the fourth row

41 and —9 times the third row was added to the fifth row.
0 0 0 = 0

2
000 Zo

2 J
1 3 0 1 0
01 2 -1 0

3 .
0 01 ) 0 <4——— The fourth row was multiplied by :—1.
0 0 O 1 0
000 Zo
L 2
1 3 0 1 0
01 2 -1 0
0 0 1 —% 0 — - % times the fourth row was added to the fifth row.
0 0 O 1 0
0 0 O 0 O

The augmented matrix in row echelon form corresponds to the system

xl + SXZ + X4 = 0
Xy + 2x3 - X4 = 0
3 = 0
X3 > Xy =
X4 = 0

Using back-substitution, we obtain the unique solution of this system

x1:0, x2:0, x3:0, x4=0.

[2 -1 3 4 9]
21. é _g _i Z 1213 <4—— The augmented matrix for the system.
| 2 1 4 4 10]
[1 0 -2 7 11]
g :; i g z <4——— Thefirst and second rows were interchanged
B 1 4 4 10 (to avoid introducing fractions into the first row).
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8 -10
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-7 10
7 —16
8 -10

-2 7

-7 10

—-14 14
15 -20

-2 7

-7 10
1 -1
15 -20
-2 7
-7 10
1 -1
0 -5

0 -2 7

1 -7 10

0 1 -1

0 0 1
0 -2 0
1 =7 0
0 1 0
0 0 1

1 0 0 O

01 00

0 010

0 0 0 1

117
—13
-25
—12]

117
13
-25
—12]

117
13
14
—25]

11]
13
-1
—25]
11]
13

—101

11]
13
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—2 times the first row was added to the second row,
—3 times the first row was added to the third row,
and —2 times the first row was added to the fourth.

The second row was multiplied by —1.

3 times the second row was added to the third row and
—1 times the second row was added to the fourth row.

1

The third row was multiplied by — »

—15 times the third row was added to the fourth row.

The fourth row was multiplied by —é.

The fourth row was added to the third row,
—10 times the fourth row was added to the second,
and —7 times the fourth row was added to the first.

7 times the third row was added to the second row,
and 2 times the third row was added to the first row.

Unique solution: I; = =1, 1, =0, I3 =1, I, = 2.

[0
22. |1
1
| 2
1
-1
0
| 2

0
-1
1
2

1
-1
0
2

1
2
-2
-1

-2
2
1
-1

OR WO o WwWR
I

O N T W S G S W )

2

coo0o 0o

The augmented matrix for the system.

<4——— Thefirst and third rows were interchanged.
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<4—— The first row was added to the second row
and —2 times the first row was added to the last row.

<4—— The second and third rows were interchanged.

CORR OORRPR OORRPL OORR OORR WORR WROR

<4—— —3 timesthe second row was added to the fourth row.

<4——— The third row was multiplied by —%,

S OOk OOORFR OOORKRr OOOM

S OOk OOORFR OCOORKR OOOM
|

SO RPN OCORFRN WORLRDN WFRkrOoODN

OROO ORRO WRRO WWRO OWRO ORWO
I

CO0O0 O00O0 000 ODOOCD ODO0OOCD ODOOD OO

(1 1 -2 -
0 0 1 . .
0 0 0 <4—— 3 times the third row was added to the fourth row.
[0 O 0
(1 1 -2 -
0 0 1 : .
0 0 0 <4—— —1 timesthethird row was added to the second row.
[0 O 0
1 1 0 O
0 0 1 O ) .
00 0 1 <4—— 2 times the second row was added to the first row.
0 0 0 O

If we assign Z, and Zg the arbitrary values s and ¢, respectively, the general solution is given by
the formulas

Zl=_S_t, ZZ=S, Z3=_t, Z4,=0, Zs=t

(a) The system is consistent; it has a unique solution (back-substitution can be used to solve for all
three unknowns).

(b) The system is consistent; it has infinitely many solutions (the third unknown can be assigned an
arbitrary value t, then back-substitution can be used to solve for the first two unknowns).

(c) The system is inconsistent since the third equation 0 = 1 is contradictory.

(d) There is insufficient information to decide whether the system is consistent as illustrated by
these examples:

1 * x %
e For [O 0 0 0] the system is consistent with infinitely many solutions.
0 0 1 =
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1 *x * x* 1 * x  x%
o For [0 0 1 0] the system is inconsistent (the matrix can be reduced to [0 0 1 0]).
0 01 1 0 0 0 1

(a) The system is consistent; it has a unique solution (back-substitution can be used to solve for all
three unknowns).

(b) The system is consistent; it has a unique solution (solve the first equation for the first unknown,
then proceed to solve the second equation for the second unknown and solve the third equation
last.)

1 0 0 O

(c) The system is inconsistent (adding —1 times the first row to the second yields |0 0 0 1|;

1 * % %
the second equation 0 = 1 is contradictory).

(d) There is insufficient information to decide whether the system is consistent as illustrated by
these examples:

1 0 0 1
e For (1 0 O 1| thesystem isconsistentwith infinitely many solutions.
1 0 0 1
1 0 0 2 1 0 0 2
e For|l 0 O 1] thesystem isinconsistent (the matrix can be reducedto|0 0 0 1{)
1 0 0 1 0 0 0O
1 2 -3 4
3 -1 5 2 <4——— The augmented matrix for the system.
4 1 a?-14 a+ 2]
1 2 =3 4
0 -7 14 -10 <4—— —3 times the first row was added to the second row
[0 -7 a?-2 a-14] and —4 times the first row was added to the third row.
[1 2 -3 4 7
0 -7 14 -10 <«——— —1 timesthe second row was added to the third row.
0 0 a*—-16 a—4
1 2 -3 4 7
10
0 1 -2 7 <4——— The second row was multiplied by — %
0 0 a?-16 a—4l
The system has no solutions when a = —4 (since the third row of our last matrix would then
correspond to a contradictory equation 0 = —8).

The system has infinitely many solutions when a = 4 (since the third row of our last matrix would

then correspond to the equation 0 = 0).

For all remaining values of a (i.e.,a # —4 and a # 4 ) the system has exactly one solution.

1 2 1 2

2 =2 3 1 <+——— The augmented matrix for the system.
1 2 —(@®>-3) a
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1 2 1 2

0 -6 1 -3 <4——— —2 times the first row was added to the second row

0 0 —a’+2 a-2I and —1 times the first row was added to the third row.
1 2 1 2
0 1 —% % <4——— The second row was multiplied by —é.
0 0 —a?+2 a-—2]

The system has no solutions when a = /2 or a = —/2 (since the third row of our last matrix would
then correspond to a contradictory equation).

For all remaining values of a (i.e, a # V2 and a # —2 ) the system has exactly one solution.

There is no value of a for which this system has infinitely many solutions.

1 3 -1 a]
27. [1 1 2 b <«——— The augmented matrix for the system.
0 2 -3 cl
1 3 -1 a
0 -2 3 —a+b <4——— —1 times the first row was added to the second row.
0 2 -3 c
1 3 -1 a
0o -2 3 —a+b <4——— The second row was added to the third row.
0 0 0 —a+b+cl
1 3 -1 a
3 a b 1
0 1 —3 575 <4——— The second row was multiplied by -7
00 0 —a+b+cl
If —a+ b+ ¢ =0 then the linear system is consistent. Otherwise (if —a + b + c # 0 ) itis
inconsistent.
1 3 1 a
28. -1 =2 1 b <4——— The augmented matrix for the system.
3 7 -1 ¢
1 3 1 a
0 1 2 a+b <4——— The first row was added to the second row and
0 -2 -4 —-3a+cl —3 times the first row was added to the third row.
1 3 1 a
0 1 2 a+b <4——— 2 times the second row was added to the third row.
0 0 0 —a+2b+cl
If —a + 2b + ¢ = 0 then the linear system is consistent. Otherwise (if —a + 2b + ¢ # 0 ) itis
inconsistent.
2 1 a
29. [3 6 b] <«— The augmented matrix for the system.



1 1 7
1 = =
2 2 a <——— The first row was multiplied by %
3 6 b
1 ; ia
9 3 <4—— —3 times the first row was added to the second row.
0 - —=a+b
2 2
13 3 :
1 P <4—— The third row was multiplied by -.
0 1 —ca+=b ?
| 3 9
1 0 Za-—3b )
1 P <4——— — - times the second row was added to the first row.
0 1 —=a+=b ’
| 3 9
. 2 1 1 2
The system has exactly one solution: x = 30~ gb and y=— sat ;b.
1 1 1 a
30. 2 0 2 b <4——— The augmented matrix for the system.
0 3 3
1 1 1 a
0 -2 0 —2a+b»b <4—— —2 times the first row was added to the second row.
0 3 3 c
1 1 1 a
b
01 0 a-— > <4——— The second row was multiplied by —%.
0 3 3 c
1 1 1 a ]
01 0 2
a-—< <+——— —3 timesthe second row was added to the third row.
0 0 3 —3a+3b+c
1 1 1 a ]
010 2 1
a—3 <«——— The third row was multiplied by 5.
b c
_0 0 1 —a+ E + 5
1 1 0 2a-2-%]
2 3
b
01 0 a—3 <4—— —1 times the third row was added to the first row.
00 1 —a+2+<
L 2 3_
1 0 0 a—=< |
3
b
0 10 a-— 2 <4—— —1 timesthe second row was added to the first row.
b c
_0 0 1 —a+ E + 5

1.2 Gaussian Elimination

29
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. c b b c
The system has exactly one solution: x; = a — 3 X2=a—z, and x3 = —a + t3-

31. Adding —2 times the first row to the second yields a matrix in row echelon form [(1) ? .

Adding —3 times its second row to the first results in [(1) (1)], which is also in row echelon form.

21 3]
32. 0 -2 -29
3 4
21 3
0 —2 —29
1 3 2]
1 3 2]
0 -2 -29
2 1 3]
1 3 2]
0 -2 -29
0 -5 —1l
1 3 2]
0 -2 -29
0 1 86l
1 3 2]
0 1 86
0 —2 —29
1 3 2
01 86
0 0 143
1 3 2
0 1 86
1l

0

coRr ocoRr

OrRrR O OFk W
RrRogS P

—1 times the first row was added to the third row.
The first and third rows were interchanged.

—2 times the first row was added to the third row.

—3 times the second row was added to the third row.
The second and third rows were interchanged.

2 times the second row was added to the third row.
The third row was multiplied by é.

—86 times the third row was added to the second row

and —2 times the third row was added to the first row.

—3 times the second row was added to the first row.

33. We begin by substituting x = sina, y = cos §, and z = tany so that the system becomes

x + 2y + 3z = 0
2x + 5y + 3z = 0
5y + 5z = 0
30
3 0 <4——— The augmented matrix for the system.
50
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1
0

w

<4—— —2 timesthe first row was added to the second row
and the first row was added to the third row.

<4—— 3 timesthe second row was added to the third row.

The third row was multiplied by —1.

OSRLPr DN OFRPDN WKk N

coRr oo R

<4— 3 timesthe third row was added to the second row and
—3 times the third row was added to the first row.

<4—— —2times the second row was added to the first row.

| (. [
RPOO ROO RWW RLWW 0w

cooc oo 2039 299 299

coRr ocooR
oOROo ORN

This system has exactly one solutionx =0, y =0, z=0.

On the interval 0 < a < 2r, the equation sina = 0 has three solutions: @« = 0, @ = w, and a = 2m.

On the interval 0 < 8 < 2m, the equation cos § = 0 has two solutions: f = % and f = 3;”

On the interval 0 < y < 2m, the equation tany = 0 has three solutions: y =0,y = m,and y = 2m.

Overall, 32 -3 = 18 solutions («, 5, y) can be obtained by combining the values of «, 8, and y listed
Vs Vi
above: (0,5, 0) , (n, > 0), etc.

We begin by substituting x = sina, y = cos 8, and z = tany so that the system becomes

2x — y + 3z = 3

4 + 2y — 2z = 12

6x — 3y + z =9
2 -1 3
4 2 =2 <4——— The augmented matrix for the system.
6 -3 1

|
ee]
|

<4—— —2 timesthe first row was added to the second row
and —3 times the first row was added to the third row.

The third row was multiplied by —é.

coN o N
| |
OB R OB R

<4—— 8 times the third row was added to the second row
and —3 times the third row was added to the first row.

OrRr R Ohn R

|
<o
|
Shrwobw obw bW ONW

<4—— The second row was multiplied by i

coN OO N
_o o RkRoo
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2 0 0 2]

0 1 0 -1 <4——— The second row was added to the first row.
0 0 1 0l

1 0 0 1

01 0 -1 <«——— The first row was multiplied by %

0 0 1 0l

This system has exactly one solutionx =1, y=-1, z=0.

The only angles a, 8, and y that satisfy the inequalities 0 < a < 27, 0 < f < 21,0 <y < w and the
equations

sina =1, cosf =—1, tany =0

are azg,[?:n, and y = 0.

35. We begin by substituting X = x?, Y = y?,and Z = z? so that the system becomes
X + Y 4+ Z = 6
X — Y + 22 = 2
2X +Y — Z = 3
1 1 1 6]
1 -1 2 2 <4——— The augmented matrix for the system.
2 1 -1 3
[1 1 1 6]
0 -2 1 -4 <«—— -1 times the first row was added to the second row
0 -1 -3 -9] and —2 times the first row was added to the third row.
[1 1 1 6
0o -1 -3 -9 <4——— The second and third rows were interchanged
0 -2 1 —4] (to avoid introducing fractions into the second row).
1 1 1 6]
0 1 3 9 <4——— The second row was multiplied by —1.
0 -2 1 -—4]
1 1 1 6]
0 1 3 9 <«——— 2 times the second row was added to the third row.
0 0 7 14]
1 1 1 6]
01 3 9 <4——— The third row was multiplied by %
0 0 1 2
1 1 0 4]
01 0 3 <4——— —3 times the third row was added to the second row
0 0 1 2] and —1 times the third row was added to the first row.
1 0 0 1]
01 0 3 <4——— —1 timesthe second row was added to the first row.
0 0 1 2

We obtain



X=1 > x=+1
Y=3 = y=+V3
Z7=2 = z=+2

1.2 Gaussian Elimination

36. We begin by substituting a = %, b= %, and ¢ = i so that the system becomes

a + 2b -— 4c =
2a + 3b + 8c =
—-a + 9 + 10c

1 2 -4 1]
2 3 8 0 —
-1 9 10 5]
1 2 -4 1]
0 -1 16 -2 —
0 11 6 6.
1 2 -4 1]
0 1 -16 2 —
0 11 6 6.
1 2 -4 1]
0 1 -16 2 —
0 0 182 -1e6l
1 2 -4 1]
0 1 -16 82
0 0 1 ~o1

Using back-substitution, we obtain

8
C=—ﬁ = zZ=
54
b=2+16C=a = y=
7
a=1-2b+4c=—-— = x=

13

QR S = Ol

1
0
5

The augmented matrix for the system.
—2 times the first row was added to the second row
and the first row was added to the third row.

The second row was multiplied by —1.

—11 times the second row was added to the third row.

The third row was multiplied by é

|
|2

U‘l|\D
B

|
U=
N5

37. Each point on the curve yields an equation, therefore we have a system of four equations

equation corresponding to (1,7): a +
equation corresponding to (3, —11): 27a +
equation corresponding to (4, —14): 64a +

equation corresponding to (0,10):

b + ¢ + d = 7
9% + 3¢ + d = -11
16b + 4c + d = -14
d 10

1 1 1 1 7

27 9 3 1 -11 .

64 16 4 1 —14 <4——— The augmented matrix for the system.
0 0 0 1 10

33
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1 1 1 7]
-18 —-24 -26 -200
—-48 —-60 —-63 —462
10

<4—— —27 times the first row was added to the second row
and —64 times the first row was added to the third.

13 100
T 1
The second row was multiplied by — v

|
S
(0]

|
(@)

—63 —462

So oRm COoOR
o
o
[EN

S OwikkF
[t}
©

100

214 <4—— 48 timesthe second row was added to the third row.
104

100

107 <4——— The third row was multiplied by i.

RprRlBe|Rmr Rrw|Be|R
N

O 0 OoORr OO0 O R
©C O R R OO RRE
O R wlhakR O B wisE

—_
CPC\

3 «— - g times the fourth row was added to the third row,

13 .
s times the fourth row was added to the second row,

O R Wb =
_ o O O
|

,_
o
SO -

and —1 times the fourth row was added to the first.

— —gtimes the third row was added to the second row and
10 —1 times the third row was added to the first row.

<4—— —1 timesthe second row was added to the first row.

ORr OO OFrRr OO
O OO0 kB OOoOOo

SO RO OOR

cooRr oo O R

The linear system has a unique solution: a =1, b = —6, ¢ = 2, d = 10. These are the coefficient
values required for the curve y = ax® + bx? + cx + d to pass through the four given points.

38. Each point on the curve yields an equation, therefore we have a system of three equations

equation corresponding to (—2,7): 53¢ — 2b + 7¢c + d = 0
equation corresponding to (—4,5): 4la — 4b + 5¢ + d = 0
equation corresponding to (4, —3): 25¢ + 4b — 3c + d = 0

5. =2 7 1 0
The augmented matrix of this system [41 -4 51 0] has the reduced row echelon form
25 4 -3 1 0



39.

40.

41.

If we assign d an arbitrary value t, the general solution is given by the formulas

(For instance, letting the free variable d have the value —29 yieldsa =1, b = —2,and ¢ = —4.)

_ 1,2
“T 729" P79

t,

cC =

29

t,

d=t

1.2 Gaussian Elimination

35

Since the homogeneous system has only the trivial solution, its augmented matrix must be possible to

reduce via a sequence of elementary row operations to the reduced row echelon form [

Applying the same sequence of elementary row operations to the augmented matrix of the

nonhomogeneous system yields the reduced row echelon form [

(a)
(b)
(9
(a)

(b)

3 (this will be the number of leading 1's if the matrix has no rows of zeros)

5 (if all entries in B are 0)

2 (this will be the number of rows of zeros if each column contains a leading 1)

There are eight possible reduced row echelon forms:

1 0 01 0 11 r O
[0 1 0], [0 1 ], [0 0 1] [0 0 0] [
0 0 110 0 OO 0 OlL0O O O

where r and s can be any real numbers.

There are sixteen possible reduced row echelon forms:

1 0 0 O]t 0 O r|[1 O r O]
0 1 0 0Off0 1 0 s||0O 1 s O
0 01 of|j0 0 1 ¢tf|j0O 0 0 1f
0 0 0 1110 0 0 0110 0 O Ol
[1 r s O][1 r s t][0 1 0 O]
0 0 0 10 0 0 OO 0 1 O
0 0 0 ofjo o 0 off0o 0 0 1}
0 0 0 Ol10O 0 0 Oll0O O O OJ
[0 0 1 0][0 O 1 r]J[0 O O 1]
0 0 0 10 0 0 0|0 0O 0 O
0 0 0 Of/I0 0 O Of|0 0 0 O
0 0 0 Ol10O 0 0 Ol10 O O Ol

where 7, s,t,and u can be any real numbers.

coocococoo

[1

,and

(@)

—_— O OO Rr O OoORr

S O OO

SO R OO On X

0 0 1

010]
0 0 0

S O OO

:

SCOoOnw 3OO

S O OO

S O

. .
coooOO0OO0OO00cOocoRr

S OO Prooo=

il

1 0 0 r
01 0
0 0 1
some real numbers. Therefore, the nonhomogeneous system has one solution.

S
t

S OO IOoOOOoORr O

0
0
0

0
0
0

CoOr OO R OO

coococo oo

S oo rooco==

S OO IoOoOOoORr O

COoOONn OO~ n

0 1 0 o0f

1000]
0010

] where 1, s, and t are
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43.
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(a) Either the three lines properly intersect at the origin, or two of them completely overlap and the
other one intersects them at the origin.

(b) All three lines completely overlap one another.
(a) We consider two possible cases: (i) a = 0, and (ii) a # 0.

(i) If a = 0 then the assumption ad — bc # 0 implies that b # 0 and ¢ # 0. Gauss-Jordan

elimination yields
0 b
c dl <4—— Weassumeda =0
c d] .
0 Bl <+— Therows were interchanged.
_1 d )
c < The first row was multiplied by;and
1 the second row was multiplied by %. (Note that b,c # 0.)
_1 0 d .. .
0 1. — times the second row was added to the first row.

(ii) If a # 0 then we perform Gauss-Jordan elimination as follows:

[a b1
c dl
1 2
[ a <4——— The first row was multiplied by L
c dl ¢
b
1 2
ad‘ibc <4—— —c times the first row was added to the second row.
a
1 k2
[ a <«——— The second row was multiplied by adibc.
0 1 (Note that both a and ad — bc are nonzero.)
1 07
[0 1] — —g times the second row was added to the first row.

In both cases (a = 0 as well as a # 0) we established that the reduced row echelon form of

[a Z] is [é 2] provided that ad — bc # 0.

(b) Applying the same elementary row operation steps as in part (a) the augmented matrix

[abk

d l] will be transformed to a matrix in reduced row echelon form [(1) (1) Z] where p
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and g are some real numbers. We conclude that the given linear system has exactly one
solution: x =p, y =q.

True-False Exercises

()
(b)

()
(d)

(e)
(f)
(8)

(h)

()

True. A matrix in reduced row echelon form has all properties required for the row echelon form.
False. For instance, interchanging the rows of [(1) 2] yields a matrix that is not in row echelon form.

False. See Exercise 31.

True. In a reduced row echelon form, the number of nonzero rows equals to the number of leading
1's. The result follows from Theorem 1.2.1.

True. This is implied by the third property of a row echelon form (see p. 11).
False. Nonzero entries are permitted above the leading 1's in a row echelon form.

True. In a reduced row echelon form, the number of nonzero rows equals to the number of leading
1's. From Theorem 1.2.1 we conclude that the system has n — n = 0 free variables, i.e. it has only the
trivial solution.

False. The row of zeros imposes no restriction on the unknowns and can be omitted. Whether the
system has infinitely many, one, or no solution(s) depends solely on the nonzero rows of the reduced
row echelon form.

False. For example, the following system is clearly inconsistent:

x+y+z=1
x+y+z=2

1.3 Matrices and Matrix Operations

(a) Undefined (the number of columns in B does not match the number of rows in A)
(b) Defined; 4 X 4 matrix
(c) Defined; 4 X 2 matrix
(d) Defined; 5 X 2 matrix
(e) Defined; 4 X 5 matrix
(f) Defined; 5 X 5 matrix
(a) Defined; 5 X 4 matrix
(b) Undefined (the number of columns in D does not match the number of rows in C)
(c) Defined; 4 X 2 matrix
(d) Defined; 2 X 4 matrix

(e) Defined; 5 X 2 matrix
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M

(a)

(b)

(9

(d
(e)

U

(8)

(h)

()

0)

(L)
M
(a)

(b)

Undefined ( BAT isa 4 X 4 matrix, which cannot be added to a 4 X 2 matrix D)

146 541 2+43] [7 6 5
—1+(-1) 041 1+2[=|-2 1 3]
3+4 2+1 4431 L7 3 7
1-6 5-1 2-3] [-5 4 -1
-1-(-1) 0-1 1-2|=| 0 -1 —1]
3-4 2-1 4-31 [-1 1 1
5.3 5-01 [15 O
5-(—1) 5-2]=[—5 10]
5.1 5-1 5 5
—7-1 =74 —7-2 :[—7 —28 —14]
-7-3 —7-1 —7-51 " 1-21 -7 =35

Undefined (a 2 X 3 matrix € cannot be subtracted froma 2 X 2 matrix 2B)

4-6 4-1 4-3 2-1 2:5 2-2 24 -2 4—-10 12-4

4 ( 1) 4-1 4- 2] [2-(—1) 2:0 2-1]=[—4—(—2) 4—-0 8—2]
4-1 4-3 2-3 2:2 2-4 16 -6 4—-4 12-8

e

1 5 2] [26 2:1 2-3 1412 542 2+6
—3({—1 0 1|+[2-(-D 2-1 2-4>::—3 —14(=2) 0+2 1+4
3 2 4l [2:2 2:1 2-3 348 242 4+6
—3-13  —3:7 -3-8] [-39 -21 —24
=[—3-(—3) —3:2 —3-5]=[ 9 -6 -—14
-3-11  -3-4 -3-101 [-33 —-12 -30
3-3  0-0] [0 O
[—1—(—1) 2—2]=[0 0]
1-1 1-11 lo o
1+0+4=5

—_

1 5 2] [3-6 3-1 3-3 1-18 5-3 2-9
u([—l 0 1]—[3-@4) 3- 3-4>==u<l—1—(—3) 0-3 1-—4)
3 2 4] 13-4 3-1 3-3 3-12 2-3 4-9
-17 2 -7
=<[ ; -3 _5])=_17_3_5=_25
—9 -1 -5

4uq;g ;é_DD=4“q? Iﬂ)=4@8+MJ=442=1%

Undefined (trace is only defined for square matrices)

ZP _1]1+P 4 ﬂ_[z3+1 2-(-1) +4 z1+2__V 2 4

0 2 1 3 1 51 12:0+43 2:2+1 2-1+45/ 13 5 7
1 -1 3 6 —1 4 1-6 —-1—-(-1) 3-4 -5 0 -1
5 0 2/-]1 1 =|5-1 0-1 2—-1|=] 4 -1 1
2 1 4 3 2 3 2-3 1-2 4 -3 -1 -1 1




(c

N’

(d

(e)

M

(8)

(h

N’/

()

0)

(k)

M

1.3 Matrices and Matrix Operations 39
1-6 5-1 2-3
-1-(-1) 0-1 1-2

T -5 4 -1\ [-5 0 -1
3-4 2—-1 4-3 -1 1 1 -1 -1 1

Undefined (a 2 X 2 matrix BT cannotbe added toa 3 X 2 matrix 5CT)

-1 1 R 1 3 3 1 3
;1 33 ﬁ-z %-o] 1275 279 |5 3]
1 1 1 1 1 1 1 9
ARAR Il PRI 2|=!2+z E—EH P 0!
1 1
1 1 -1 1 1 5 1 3 9
52 5] b e
4 —1]_' 4 01_[ 4—4 —1—0]2[0 —]
o 207101 2T o1 2-2/Tl1 o

6 —1 4 1 -1 3] [2:6 2-(=1) 2-4] [3-1 3-(=1) 3-3
2[1 1 1]—3[5 0 2] [2 1 21 2-1]—[3-5 3.0 3-2]
3 2 3 2 14 123 222 23 132 3.1 3.4
12-3 —2-(=3) 8-9 9 1 -1
—[2—15 2—0 2—6]=[—13 2 —4]
6—12 0 1 —6
—1 4 1 —1 3 2.6 2:(=1) 2-4] [3-1 3-(=1) 3-31\"
< [ ]—3[5 D <[2-1 2-1 2 1] [3 5 3.0 3-2])
2 2.3 2.2 23 13.2 3.1 32
12—3 —2—(=3) 8—9 9 1 —17\" 9 —13 0]
([2—15 2-0 2-6 ) =([—13 2 —4]) =[ 1 2 1
6-6 4-3  6-12 0 1 —6 1 —4 —él
[(1-1)—(4-1)+(2-3) (1-5)+(4-0) +(2-2) (1-2)+(4-1)+(2-4)]_? 1 ;
B D-1-1D+G-3) B5+A-0+G-2) B-2)+1-D+(G-4 __4 1 3
13 9 14]_? . 2]
17 25 27|, | %

1B 6-O1D+14-4)  @B-D+O-1D+14-1) (3-3)+(9-2)+(14-3)]
((17-6)— (25- 1)+ (27-4) (A7-D+ Q5 - D+ @27-1) (17-3) + (25-2) + (27-3)
[ 65 26 69]
185 69 182

Undefined (a 2 X 2 matrix B cannot be multiplied by a 3 X 2 matrix A)

1 5 2116 -1 4
tr{|—-1 0 1
3 2 4

1 1 1
3 23
((1-6)+G-1D+(2-3) -1 D+G-D+2-2) (1-H+G-1D+2-3)
=tr[[-(1-6)+(O0-D+1-3) QA-D+0O-D+1-2) —-1-4)+0-1)+(1-3)
36+ D+(43) -G D+QD+A2) @B H+Q 1)+ 4-3)

[17 8 15
=tr{|-3 3 —-1||=17+3+ 26 =46

132 7 26

Undefined (BC isa 2 X 3 matrix; trace is only defined for square matrices)
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(a)

(b)

(9

(d

(e)

(0}

(8)

(h)

~1-4)+@200 A-D+@2-2)|=|-4 5

B:-4)+((0-0) —-3B-1)+(0-2) [12 —3]
1-9+@1-0) —(1-1)+(1-2) 4 1

Undefined (the number of columns of B does not match the number of rows in A)

3.6 3-1 3-3][ 1 5 2
3-(-1) 3-1 3-2([-1 0 1
3.4 3-1 3-3]1 3 2 4

((18-1)—(3-1)+(9-3) (18:5)+(3-0)+(9-2) (18-2)+ (3 -1)+(9-4)
=[-BGD-GB-D+(@®6-3) -35)+B-0)+(®6-2) —(3-2)+(3B-1)+(6-4)
((12-1D)-B-1D+@©:3) (12:5+B-0)+(9:2) (12:2)+@B-1)+(9-4)

[42 108 75
=12 -3 21
136 78 63

—1-4)+@2:00 (1-D+2-2)

(3®+wﬁ>—84ymwﬁ[14 2 L ]F 4 2
1-H+1-0 -1 D+ ! 5 3 15

(12-1)-(3-3) (12:4)—-(3-1) (12:2)—(3'5)
—-@4-1D+G3) -@G-4H+6G1) —-4-2)+G-5H|= [11 —11 17
4-1)+(1-3) @G-4H+A-1) (“-2)+(1-5) 17 13

1 i 0-1)+(2-3) (0-4)+(2-1) (0-2)+(2-5) 2 10

B-1)+(0:6) (3-15)+(0-2) (3-3)+(0-10) 9
[11 —11 ]

[31(4D—03)HA%%LD(+D—GG)_[14P 15 3
1 6

—1-1D)+@6) —(1-15)+(2-2) —-(1-3)+(2-10)|= 17
1-D+1-6) (1-15)+(1-2) (1-3)+(1-10) 13

L 7l; Y@ v+e9re2 ueww+m+@6q_ﬁ11q
3 15 ) = 13D+ H+G2) B3:3)+(@-1)+(5-5)] 117 35
(1-3)-G-D+21) 1-0+G-2+2 D]\
—(1-3)=(0-D+@-1) —1-0)+(0-2)+(1-1) =[1(2) _i 1;
| 33)-Q D+@1) (B 0)+(@2:2)+ 4 1)
1-9+3-0 —(1-1D)+(3-2)
<4 1][4 3 _1 1] (4-9)+(1-0) —(4-1)+(1-2) g _; ﬂ
2-D+(G-0 —2-1)+(5-2)

E 5]3 11 [(4 A N R (4-1)+(5-1)‘

=16 2|y T, {/=|A6H-@ 0 -A6-D-(2:2) A6-D-(21)
! (8-3)+(8:0) —(8-1)+(8-2) (8-1)+(8-1)
12 6 9

=48 —20 14]
24 8 16

|



()

0)

()

M

()

1 5 2
tri{{—-1 0 1
3 2 4

<'(1-1)+(5-5)+(2-2) -1-1D)+G-0)+2-1D (1-3)+(5-2)+(2-4)D

=t

=t

r

—

{t
Al
|
i

(o

[(1:3)+3:0) -(1-D+(B-2) (1-D+B-1) 2:6 2-(-1) 2-4
4-3)+(1-0) —4-D+(1-2) @G- D+@-D|+]|2-1 2-1 2-1]
(2:3)+(5:0) -2 D+G-2) @ D+G-1| [2:3 2-2 2-3

1.3 Matrices and Matrix Operations

1 -1 3
K|
2 1 4

-1-D)+O-5+1-2) @A@-D+O-0)+(1-1) -A-3)+(O-2)+(@1-4)
| B-D+2:5)+¢A-2) -BGD+R-0)+#-1) (B:3)+2-2)+H-4
30 1 21])

1 2 1]])=30+2+29=61

121 1 29

2 3 4

6 -1 4 1 5 2 4:-6—-1 4-(-1)—-5 4-4-2
[1 1 1]—[—1 0 1]):tr([4-1—(—1) 4:-1-0 4-1—1])
3 3 2

4:-3-3 4:2-2 4:-3-4
3 -9 14

5 4 3]>=23+4+8=35

9

3

6 8
6 -1 4
1 11
3 2 3

| [REE

5

'3 5 4] [12 -2 8 15 3 12
12 -2 5|+ 2 2 2])=tr([14 0 7D=15+0+13=28
8 7 6 4 6 12 12 13
6 1 3171 31\'[ 3 0
1 1 2[4 1]) [—1 2]
4 1 3ll2 5 1 1

-1-D+A-49+2-2) -1-3))+A-1)+(2-5) 2

(6 D+1-49)+3B-2) 6-3)+1-1)+3-5) T[ 3 o]
(4- 1)+(1 4+ (3-2) 4-3))+@A-1)+@35 1 1

1634 30 6 7 wm[ 30
7 8l] |-1 2||=tr [348 28]—1 2
14 28 11 11

(16 3)—(7-1)+(14-1) (16-0)+ (7-2) + (14- 1))
(34-3)—(8-1)+(28-1) (34-0)+(8-2)+(28-1)

28
122 44)=55+44=99
1 6 1 3)\[ 3 0] [2-1—6 2:(=1)=1 2-3-3][ 3 0
0 ] [1 1 ZD[ ] [2-5—(—1) 2:0-1 2-2—2”—1 2]
1 4 1 31/l 1 1 l2.2-4 2:1-1 2.4-3ll 1 1
_3 3 —4-D+B-D+B1) —(4-0-(GB-2)+@3-1)
—1 2 ] A1-3)+(1-D+@2-1) (11:0)—(1-2)+(2-1)
0-3)—(1-D+G-1) (00 +(1-2)+(-1)

J

41
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(b) Undefined (a 2 X 3 matrix (4B)C cannot be addedtoa 2 X 2 matrix 2B)

G-D+0:3) GH+0-1) G-2+0-57\ [ -1 3
© [([-l-a-D+@23) -@-H+@2-1) -A-2)+@2-5|] +5|5 o0 2]
1-1D+1-3) @-49H+@-1) @-2)+@-5) 2 1 4
3 12 6]\" [5-1 5-(-1) 5-3 -3 -5 —4 5 -5 15
=<—[5 -2 8) +|5-5 5-0 5-2]=[—12 2 —5[+]|25 0 10]
4 5 7 5.2 5-1 5-4 -6 -8 —-71 l10 5 20
—3+5 —54(=5) —4+15 2 —10 11
=|-12425 240 —5+10=[13 2 5]
—-6+10 —8+5 —7+420 4 -3 13
4 13—11 2:1 2-4 2-21\7
(d) ([0 H [2-3 2-1 2-5)
_((4 3)—(1- 0) ~(4-1)-(1-2) G- 1D-@1-1 _[2 8 4])T
“\O0-3)+@200 —(0-1D+@2-2) O-D+2-D] l6e 2 10
:(-12 —6 3]_2 8 4])T:([12—2 -6-8 3-4 )T
L0 6 2 10 0-6 4—2 2-10
10 —14 —17\" [10 _6]
(.—6 2 —8.) 1 g

1 3 30
4 0111 4 2 3 -1 1
(e) [—1 2]([3 1 s.g ~é]_[o 2 1 [_} i])

_[ 4 0({(1-1)+(4-4)+(2-2) (1-3)+(4-1)+(2-5)]

-1 20\ D)+ @)+ G52) B:-3)+(@1-1)+(5:5)
_[(3-3)+(1-1)+(1-1) (3-0)—(1-2)+(1-1)D
0:3)—2-D+(1-1) (0-00+@2-2)+(1-1)

4 01(21 177 [11 -1
=[—1 2(17 35] [ D [
(4-10) + (0 - 18)
—(1-10) + (2- 18)

4 01[ 21—-11
1 2”17—(—1)
(4-18) + (0 - 30) =[4o 72]
—(1-18)+ (2-30)] ~ 126 42

sl B

10 18]

1 -1 3|6 -1 4 6 1 31[ 1 5 21\
0 [5 0 of|1 1]_([_1 ; ZH_l o 4)
2 1 4l13 2 3 4 1 31l 3 2 4
1-6)—-(1-1)+@B-3) -1-D-1-D+@B-2) 1-49-(1-1)+(3"-3)
=[{G-6)+(O0-D+2-3) -G-D+O-D+2-2) G-4+(0-1)+(2-3)
2-6)+(1-1D+4-3) --D+A-D+4-2) 2-49+0-1)+(4-3)

-1-D-1Q-D+2-3) -A-5+@0-0+(2-2)
@4-H)-1-1)+@3-3) 4-5+@1-0+3-2)

14 4 12 14 36 251\ [14 4 12 14
=136 -1 26|—-(]| 4 -1 7|] =[36 -1 26|-][36

25 7 21 12 26 21 25 7 21 25

(l(6-1)—(1-1)+(3-3) (6:5)+(1:0)+(3-2)

6-2)+1-1)+(3-4)
—1-2)+A-D+(@2-4)
“4-2)+1-1D+(G-4

4 12 0 0 O
-1 26|=(0 0 O
7 21 0 0O

21118 30

)



(a)

(b)

(9

(d

(e

M

(a)

(b)

(9

1.3 Matrices and Matrix Operations

6 —2 4
firstrow of AB = [firstrowof A]B =[3 =2 7] [0 1 3]

7 75
=[B36)—2-0+((77) —-3-2)—-2-1)+7-7) B-4)—-(2-3)+((7"-5)]
=[67 41 41]

6 -2 4
third row of AB = [thirdrow of A]B =[0 4 9] [0 1 3]

7 75
=[0-6)+4-0+0O-7) —(0-2)+A-1)+0O-7) (0-4)+#-3)+((9"-5)]
=[63 67 57]
second column of AB = A [second column of B]

3 -2 71[-2 -3B:2)-2-D+ 77| 41
=6 5 4 =[-6-2)+G-D+@-7N|= 21]
0 4 9ll 7 —(0-2)+@-D+0O-7| l67

first column of BA = B [first column of 4]

6 —2 41131 [(6-3)—(2-6)+(4-0) 6]
=10 1 3|l6]=[0-3)+@-6)+(3:0) =[
7 7 sllo]l [7-)+@7-6)+5-0)| le3l
3 -2 7
third row of AA = [thirdrowof A]4A =[0 4 9] [6 5 4]
0 4 9

[(0:3)+(4-6)+(O9-0) —(0-2)+(M4-5+04) O-H+HA-49)+0O-9)]
[24 56 97]

third column of AA = A [third column of A]

3 -2 7171 [ D-Q-H+7-9] (76
=le 5 4|l4l=|6-D+G -4)+@ 9)|=]|98
0 4 ollal [0-7D+@ 4+©-9] lo7

first column of AB = A [first column of B]

3 —2 71161 [B-6)—2-00+ (7 7] 767
=16 5 4{|0|l=((6-6)+(-0)+ (@ -7)|=|64
0 4 oll7l [(0-6)+@-0)+©9-7)] le3

third column of BB = B [third column of B]

F e
Ny

o-4H+@A- 3)+(3 5)
second row of BB =[secondrowof B]B =[0 1 3] !0 1 3

7-+@-3)+G-5)| L7a
7 7 5

[0-6)+(1-0)+(3-7) —(0-2)+(1-1)+(B-7) (0-4)+1-3)+(3-5)]
[21 22 18]

43
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(d) first column of AA = A [first column of A]

3 -2 71131 [B-3)-@2-6e)+(7-0] -3
=l6e 5 4ll6l=|6-3)+G-6)+@-0)|= 48]
0 4 ollol [(©0-3)+@-6)+(9-0)] Ll2a

(e) third column of AB = A [third column of B]
3 -2 7] [4' ((3:4)—(2:3)+ (7 5)] ‘41]

=16 5 4[|3]|=|(6-4)+(-3)+(4-5)| =159
10 4 9llsl [(0-4)+(4-3)+(9-5) 57
3 -2 7
(f) firstrowof BA = [firstrowof B]A =[6 -2 4]|6 5 4
0 4 9
=[(6:-3)—2:6)+(4-0) —(6:2)—2:5)+¢-4) (6:-7)—(2-4)+(4-9)]
=[6 —6 70]
3 -2 7 -3
9. (a) firstcolumnof AA =3|6|+6| 5/+0|4|=]48
0 4 9 24
3 -2 71 [12
second column of A4 =-2|6|+5| 5|+4[4|= 29]
0 4 91 156
3 -2 7 [76]
third column of AA =7|6(+4| 5|+9[4]| =198
0 4 9 97 ]
6 -2 4 64
(b) firstcolumnof BB =6|0|+0| 1|+ 7|3|= [21
7 7 5 77
6 -2 41 114
second column of BB = —=2|0|+ 1| 1|+7|3]|=|22
7 7 51 128
6 -2 4 [38]
third column of BB =4|0|+3| 1|+5|3| =118
7 7 5 [ 74]
3 -2 7 67
10. (a) firstcolumnof AB =6(6|+0| 5|+7(4]|= [64]
0 4 9 63
3 -2 7 (41
second column of AB = —-2|6|+ 1| 5|+ 74| = 21]
0 4 9] 167
3 -2 7 [41]
third column of AB =4|6|+3| 5|+5|4|=159
0 4 9 |57
6 -2 4 6
(b) firstcolumnof BA =3(0|+6]| 1]+0]3 =[ 6
7 7 5 63




11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

1.3 Matrices and Matrix Operations
6 -2 4] —6
second column of BA =-2|0|+5| 1|+4|3|= [17]
7 7 5] 41
6 -2 4 70
third columnof BA =7|0|+4]| 1|+9]|3|= 31]
7 7 5 1122
[2 -3 5 [X1 7 2 -3 5 7
(@ A=|9 -1 1|, x=|X2|, b=|—-1[; the matrix equation: |9 —1 1 =|-1
1 4 [ X3 0 1 0
[4 0 -3 1] X1 1 4 0 171[*1
_15 1 0 -8 _|*2 _13]. . . |5 1 O—8xz_
(b) A= 5 5 9 —1| X = X3 ,b = ol the matrix equation: 5 _sg 9 1] =
0 3 -1 7] X4 2 0 3 711%4
[1 -2 3 x -3 1 -3
2 10 ! 0 2 0
= = x - i i .
(@) 4 0 -3 4| X xz 1l the matrix equation: 0 _3 4 1
1 0 1 i 5 1 5
3 3 3 3 [X1 -3
(b) A=|-1 -5 -2|, x= xz, the matrix equation: |—1 —5 —2 X2l=1| 3
L 0 -4 1 [ X3 0 —4 1llxs 0
(@ 5x + 6x — Tx3 = 2 M) x + y + =z = 2
—X; — 2x, + 3x3 = 0 2x + 3y = 2
4x, — X3 3 5« — 3y — 6z = -9
(a) 351 — X + 2x3 = 2 (b) 3w — 2x + z 0
4x; + 3x, + Tx3 = -1 Sw + 2y — 2z = 0
—2x; + x5, + 5x3 = 4 3w + x + 4y + 7z = 0
2w + 5x + y + 6z 0
1 1 01][k k+1
[k 1 11|11 0o 2 ||1|=[k 1 1l|k+2|=k?*+k+k+2—-1=k?+2k+1=(k+1)?
0 2 -=-3l11 -1
The only value of k that satisfies the equationis k = —1.
[1 2 0][2 6
2 2 k]|2 O 3[2]=[2 2 k]|[3k+4|=k*+12k+20 = (k +10)(k + 2)
0 3 1llk k+6.
The values of k that satisfy the equation are k = —10 and k = —2
4] —3] _[0 4 8,6 -9 -31_[6 -5 5
o 1 2+ [Tz 3 =g 5 ]+l T3 Sl=[ 33
0] —2] _J0 0 0 6 0 —41_16 0 —4
e 0[5 0 2= 0+ g o Tel=lis 16 2
1] 1 2 15 1871 _[22 28
4] [1 2] +[5] 3 4+ [6] 5 6] [4 8 [15 20] 30 36l [49 64]
0] 4 2 _ 0 16 0 2 —=21_7118 =2
iz e+ Gl o[ - [ B B v e P ol

45
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22,

23.

24.

25.

26.
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X7 [3r—4s—2t1 [01 —3p7 r—4s1 r—2t1 [0 -3 —4 -2
Xy g g T] [ 0] [ 0] 8 [ 1] [ 0] [ O]
X4| S =101t 0+ s+ 0_0+r0+51+t0
Xs t 0 0 0 ef |9 0 0 1
_x6_ g _5_ O 0 O _5_ 0 0 O
X171 —3r—4s—2t1 1-3r —4s -2t —37 —4 -2
X, r r 0] [ 0 [ 1 [ 0] [ 0]
x3| —2s | o], [-2s of _ 0 -2 0
X4|” s =1 oolT s|T| o7 o T 1T o
_x6_ L 0 - - 0- 0 0 0' 0 0

The given matrix equation is equivalent to the linear system

a=4
3=d-2c
—-1=d+2c
a+b=-2

After subtracting first equation from the fourth, adding the second to the third, and back-substituting,
we obtain the solution: a =4, b=-6,c=-1,and d=1.
The given matrix equation is equivalent to the linear system
a — b
a + b

I
S ee)

c + 3d
— ¢ + 2d = 6

After subtracting first equation from the second, adding the third to the fourth, and back-substituting,

. . 9 7 4 13
we obtain the solution: a=-, b= —5 ==z ,and d =<

(@) Iftheithrow vectorof Ais [0 --- 0] then it follows from Formula (9) in Section 1.3 that

ith row vectorof AB = [0 .- 0]B = [0 - 0]

0
(b) Ifthe jth column vector of B is [] then it follows from Formula (8) in Section 1.3 that
0

g

0
the jth column vectorof AB = A [
0

[¢11 0 0 0 0 O] a1 Q12 Q13 414 Q15 Qge

| 0 ay 0 0 0 0 [ 0 az; az3 Qzsa azs Az

0 0 as3 0 0 O 0 0 azz az az ase

@ | o 0 0 a, 0 o0 )| 0 0 0 ayn aw asl
0 0 0 0 ags O [ 0 0 0 0 as; asg

0 0 0 0 0 ag 0 0 0 0 0 ag



27.

28.

29.

32.

33.

34.
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aqq 0 0 0 0 0 a1 Q4 0 0 0 0
[am az; 0 0 0 0] [au Qyy dp3 0 0 O]
a a a 0 0 0 0 a a a 0 0
© 31 32 33 0 0 (d 0 3(2) 33 34 0
Qg1 A4y A4z Agg | Qg3 Q44 Q4s
la51 As; Q53 dsg Ass OJ 0 0 0 asy ass ase
Qg1 Qg2 Ag3 Aes Ues  Qgg 0 0 ags aee
X a1 A2 4g3 11X +apy + a3z x+y
Setting the left hand side A [ ] =[A21 Q22 QAp3 [ ] = |Az1X + a2y + ay3Z| equalto [x —y
z azq 0azz 0dsz az1X + azpy + azzz 0

yields

a1 xt+appytazz=x+y

A21X + A2y + Az3Z2 =X — Y

az1X +azy +azz3z=0
Assuming the entries of A are real numbers that do not depend on x, y, and z, this requires that the
coefficients corresponding to the same variable on both sides of each equation must match.

1 10
Therefore, the only matrix satisfying the given conditionis A = 1 -1 0].
0 0
X 11 Q12 Q3 a11X + a1y + a132 xy
Setting the left hand side A [y] =|G21 Q22 Q23 ] = [@21X + a2y + az3z| equal to [ 0 ] yields
z dzy; dzz ds3 az1X + azzy + dzszz 0

a11X + a2y + ay32 = xy

Ay X + az2y + ay32 =0

az1x +azy +azz;z=0
Assuming the entries of A are real numbers that do not depend on x, y, and z, it follows that no real
numbers a;4, a;, and a3 exist for which the first equation is satisfied for all x, y, and z. Therefore no
matrix A with real number entries can satisfy the given condition.
(Note that if A were permitted to depend on x, y, and z, then solutions do exist e.g,,
y 0 0
z 0 —x].)

0 z —y

A=

@ [} a5 7]

(b) Four square roots can be found: [\/g g], [_\/g g], [\/(5_) 0], and [_\/(5_) O].

—3
2 3 4 5 11 1 1 1 -1 1 1
3 4 5 6 1 2 4 8 1 -1 -1 1
@ |, 5 6 7 ®) ] 3 o 27 © 17 1 -1 -1
5 6 7 8 1 4 16 64 1 1 -1 -1

the total cost of items purchased in January
the total cost of items purchased in February
the total cost of items purchased in March
the total cost of items purchased in April

The given matrix product represents

(a) The4 x 3 matrix M + ] represents sales over the two month period.
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(b) The 4 X 3 matrix M — J represents the decrease in sales of each item from May to June.

oo

d y=[1 1 1 1]

(e) Theentryinthe 1 X 1 matrix yMx represents the total number of items sold in May.

True-False Exercises

()
(b)

()

(d)
(e)

)

(8)

(h)
)

0)

(k)

M

True. The main diagonal is only defined for square matrices.

False. An m X n matrix has m row vectors and n column vectors.
. o [0 0 10 0 _
False.E.g., if A = [0 O] and B = [1 0] then AB = [0 0] does not equal BA = B.

False. The ith row vector of AB can be computed by multiplying the ith row vector of A by B.
True. Using Formula (14), ((4A1)7);; = (A7) ; = (4)y;.

0 0

0 0] is 0, which does not equal

. 1 o [0 0 _
False.E.g., if A = [0 O] and B = [0 1] then the trace of AB = [
tr(A)tr(B) = 1.

0 0] does not equal ATBT = [8

False.E.g,if A = [é 8] and B = [2 g] then (AB)T = [0 0

True. The main diagonal entries in a square matrix A are the same as those in A”.

True. Since AT is a4 X 6 matrix, it follows from BT AT being a 2 X 6 matrix that BT mustbe a 2 X 4
matrix. Consequently, B is a 4 X 2 matrix.

a1 Qip ca;; - Chgp
tr{c|f: ™ = tr : :
An1 " Qnn Cdny -+ Clpn

a11 cee alTL
=Cayq + -t Capy = C(a11+-'-+ann) =ctr : :

an1 = Qun

True.

True. The equality of the matrices A — C and B — C implies that a;; — ¢;; = b;; — ¢;; forall i and j.
Adding c;; to both sides yields a;; = b;; foralliand j. Consequently, the matrices A and B are

equal.

0 0

0 0
1 0 ] even though A # B.

False.E.g., if A = [é 8] and B=C = [ 0 0

]thenAC:BC:[

(m) True.If Aisap X g matrix and B is an r X s matrix then AB being defined requires g = r and BA

(n)

being defined requires s = p. For the p X p matrix AB to be possible to add to the g X g matrix BA,
we must have p = gq.
0

] then it follows from Formula (8) in Section 1.3 that
0

True. If the jth column vector of B is
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0
the jth column vectorof AB = A

] then BA = A does not have a column of zeros even though B

0

False.E.g., ifA = H ﬂ and B = E 8

does.
1.4 Inverses; Algebraic Properties of Matrices

-34 -21

@ A+@+O=@++c=[ 52 28

0 s (b) A(BC):(AB)C:[

_ _[14 15 _ _[—12 -3
(©) A(B+C)—AB+AC—[0 e (d) (a+b)C=aC+bC=]| 5 6]
—-24 -16
(@) a(BC) = (aB)C = B(aC) =[ o 36]
(b) A(B—C)=AB—AC = [‘12 _2]
() (B+C)A=BA+CA= [_12 —22
B _[—112 -28
(d) a(bC) = (ab)C = | o1t
™ — 4 —[3 —1 T _ pTar _ [—1 4
@ 49 ‘A‘[z 4] (b) (4B)" =B A" = [10 —12]
T _ 4T r_[3 3 r_ A7 _[16 —12
@ @+B) =a" 45 =[> 3] ® @ =acT =7 "]
The determinant of A4, det(4) = (2)(4) — (—3)(4) = 20, is nonzero. Therefore A is invertible and its
13
. . -1 _i 4 3 _ E 5
inverse is A —20[_4 2]— 1o

w1

10

The determinant of B, det(B) = (3)(2) — (1)(5) = 1, is nonzero. Therefore B is invertible and its

. o2 -1
inverseis B™" = [_5 3].
The determinant of C, det(C) = (2)(3) — (0)(0) = 6, is nonzero. Therefore C is invertible and its
1
- 0
. . -1 _ 1 3 0 _ 12
inverseis C™* = s Lo 2] = 0 1
3

The determinant of D, det(D) = (6)(—1) — (4)(—2) = 2, is nonzero. Therefore D is invertible and its

1
inverseis D71 = 1[_1 _4] _|7z 2 )
2L 2 6 1 3
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11.

12.

13.

14.
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%(ex + e—X) %(ex _ e—X)
The determinant of A = (7] 1 )
E(e"—e"‘) E(ex+e"‘)

det(4) =z (e* +e ™) — (¥ —e™)2 =L (eP +2+e ) — (e -2+

%(ex +e™)
—2(e*—e™)

nonzero. Therefore A is invertible and its inverse is A™1 =

e~2%) =%(2+2) =1is

1 x _
z(e

e ™)
1. x -\ |
E(e +e™™)

The determinant of the matrix is (cos 8)(cos 8) — (sin8)(—sinf) = 1 # 0. Therefore the matrix is

invertible and its inverse is [C9SQ —sin® )
sin @ cosfO
1 1
[ 2 4 4 — 4 -4 |5 ~s
AT_[—3 4] CORE T @@- (4)( 3)[ ] [ ] 3 1
20 10
1 1 1
-1 _ _171 4 5 % T _ |5 s
A 1_(2)(4)—(—3)(4) [—4 2]_%[—4 _1 1 ol 3 1
5 10 | 20 10
1 3]
1 1 4 31 _174 31_| 5 =2
4 1‘(2)(4)—(—3)(4) [—4 2]_%[—4 2]_ _1 o1y
| 5 10
1 3 1 3] 1 3
= 10 20 10 20 10 20 2 =3
(A H 1= 1 10 20 _ _1 |10 20| — 9|10 20| _ —A
leame ] EEE! et FAN! ] F N I TR
_[—-18 L 1 36 12 L 36 121 _
ABC = 64 ] (ABC) "~ (-18)(36)—-(-12)(64) l—64 —18 120 —64 —18]_
[1 O 1 3
“ip-14-1_ (1[3 0O 2 —1y/a1 4 3n_ |2 — 5 20
=GR L2 GLE -] L 31[ ||
| 3 5 10
_[—18 127 r _[—18 647, TRT AT — 41 _ -
ABC = 64 36]' (ABC)" = -12 36/ ¢'BA [ H— 4]‘[_

From part (a) of Theorem 1.4.7 it follows that the inverse of (7A)‘1 is 7A.

__ 1t 2 =7 _a[-2 =71_[2 7 _1J2
Thus 74 = EE RO [_1 Y nlerd Y _3] [1 3]. Consequently, A 7[1
From part (a) of Theorem 1.4.7 it follows that the inverse of (547)7! is 5AT.
1 1 -3 1
T I - =
Thus 54 - [ ] [ c 3].Consequently,A 13
5 5

10 10

8 3

7
3

15 20
1

10
3

20

18 64
12 36

]=

NIk NN
N W
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18.

19.

20.

21.
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From part (a) of Theorem 1.4.7 it follows that the inverse of (I +2A4)71 is I + 2A.

5 2
Thus I + 24 = CDG-@® [_4 _1] T -13 [—4 = L R |
13 13
_5 2z -2 =
Consequently, A =% 413 113 [1 O] E _E
13 13 13 13
51
From part (a) of Theorem 1.4.7 we have A = (A1)~ . Therefore A = % [_g % - 133 N
13 13

@ A*=aaa=[ 1|

30 11

A3)1 = 1 —15 —15
(b) (4" (41)(11)-(15)(30) L— ] [— ]

e (FEENENIERE N

8
3 _ —
(@) A3 =AAA= [28

3y—1 _ 1 1 07 _ % 0
(b) (4°)” m[_zg 8] 5[—28 8l " |_z 4
2
@ a-zavi=[ 400 -2l 0+ =l d-lg 2+l 1=[ ol
(@ A-20=[; _]] 242 -a+1=[7) ] (@ 4*—24+1=[32 13
@ au=[) O weean=[] Y @eoan=]
an=[00 310 ma=[0 I b=l
The matrices A and B commute if [8 Ccl]=[g Bl,i.e.
0=
a=d
0=
c=
Therefore, [CCL Z and [8 0] commute if c =0 and a =d.

If we assign b and d the arbitrary values s and ¢, respectively, the general solution is given by the
formulas
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25.

26.

27.

28.

29,

30.
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ac=[2 dlli ol=la o

The matrices A and € commute if [

0 Olfa b 0 O
]; CA=[1 0][c dl " la b]'
b O[O 0]
d 0 a bl
b=0
0=0
d=a
0=b»

a b 0 0
Therefore, [c d 1 0

If we assign ¢ and d the arbitrary values s and ¢, respectively, the general solution is given by the

and [ commute if b =0 and a = d.

formulas
a=t, b=0, c=s, d=t
o = OCED-DE®) _ 1 BE-WED _ 13
L7 ®0G-(-2@ 23" 727 3)(G)-(-2)(4) 23
= PAO-O® _ 17 DO-CD® _3
L7 (D(=3)-6G)(-1) 8’ "2 7 (-D(-3)-(5)(-1) 8
g, = PO-WC2) 2 1, (©E)-MO) 12 6
1 ©®)(-3)-(D“) -22 117 72 (6)(-3)-(1D4) —22 11
_@@-(-2@4) _ 24 _ 12 _ @QWwW-@ _ 4 _2

L7 @@--21) 10 57 727 @@-(-2)(1) 10 5

a2 _ar_[2 4
p) =A2-or=[g ],

_ 6 1 4 a0 1 12 4
m@=4a+31=[5 |, pW=a-31=; | m@p@=[; ]
p1(Ap,(A) = (A+31)(A—-3I)

=A(A-31)+ BNH(A-3]) ¢ Theorem 1.4.1(e)

= (42 -ABD) + (B3DHA - (3DH(3D) 4—— Theorem 1.4.1(j)

= (A% —3(4D) + (3(14) — 9II) < Theorem 1.4.1(m)
= (4> -3A)+ (B4 -9 4— Property Al = IA = Aonp. 43
= A%2 - 9] = p(4) 4—— Theorem 1.4.1(b)
_ o _[0 1 oy [ 11 -1 -1
(@) If A= [0 0 and B = [0 0] then (A+B)(A—B) = [0 0] [0 0] = [0 0] does not

2 _p2_[1 01_10 01_q1 O
equal A% — B = [0 0] [o 0l = [0 o]'
(b) Using the properties in Theorem 1.4.1 we can write
(A+B)(A—B)=A(A—B)+B(A—B) = A>— AB + BA — B?
(c) Ifthe matrices A and B commute (i.e., AB = BA) then (4 + B)(A — B) = A*> — B2
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34.
35.

36.
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1 0 0][-1 0 O 0 0
We canlet A be one of the following eight matrices: |0 1 0[,] 0 1 0], -1 0f,
0 0 1 0 0 1 0 1

-1 0 0]f1 O 0pj-1 0 07 11 0 07 -
0 -1 0f|0 1 0, 0 1 0,10 -1 0], 0 .
0 0 11lo 0 -1 0 0 —-1110 0 -1 0 -1

0
-1
0
0 10
Note that these eight are not the only solutions - e.g., A can be [1 0 0], etc.
0 0 1

(a) We can rewrite the equation
A2 +24+1=0

A? 424 =—1
—AZ—2A=1
A(FA-2D =1

which shows that A isinvertibleand A1 = —4 — 2I.

(b) Let p(x) = cpx™ + -+ + c3x% + ¢y x + ¢y with ¢, # 0. The equation p(4) = O can be rewritten

as
CRA™ + o+ A2 + A+ ¢l =0
CnAn + b + C2A2 + ClA - _Col
C c c
Co Co Co
C c c
A(__nAn—l______ZA__ll)zl
Co Co Co
which shows that A is invertible and A™1 = —Z—"A”‘l — = E—ZA - %I.
0 0 0

If A3 =1 then it follows that AA%? = I therefore A mustbe invertible (471 = A42).

If the ith row vector of Ais [0 - 0] then it follows from Formula (9) in Section 1.3 that
ithrow vectorof AB = [0 -+ 0]B = [0 - 0].
Consequently no matrix B can be found to make the product AB = thus A does not have an

inverse.

0
If the jth column vector of 4 is [

0

then it follows from Formula (8) in Section 1.3 that
0
the jth column vectorof BA = B|:

Il

Consequently no matrix B can be found to make the product BA = I thus A does not have an
inverse.

If the ith and jth row vectors of A are equal then it follows from Formula (9) in Section 1.3 that
ith row vector of AB = jth row vector of AB.

Consequently no matrix B can be found to make the product AB = thus A does not have an
inverse.

If the ith and jth column vectors of A are equal then it follows from Formula (8) in Section 1.3 that
the ith column vector of BA = the jth column vector of BA
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Consequently no matrix B can be found to make the product BA = I thus A does not have an
inverse.

X11 X12 %13
X21  X22 X23|,the matrix equation AX = I becomes

X31 X32 X33
1 0 O
fos
0 0 1

37. Letting X =

X114t X317 X12 t X3z X13 + X33
X114t X214 X12 t X232 X13 + Xp3
X1t X31 Xp2 + X33 Xp3+ X33

(@)

Setting the first columns on both sides equal yields the system
X1 +x31=1
X171 +%x21 =0
X1 +x31 =0

Subtracting the second and third equations from the first leads to —2x,; = 1. Therefore x,; = —%

and (after substituting this into the remaining equations) x;; = x3; = 3

The second and the third columns can be treated in a similar manner to result in
1

2

2]
o
X11  X12 X313
X21 X322 X33
X31 X32 X33

N[RDNIR NP

)
I
I_—|—_|
NIRN|IRN]|=
NIRN|RN]|R=
NIRN|IRN]|R=

%L We conclude that A invertible and its inverseis A~1 = |—

38. Letting X = , the matrix equation AX = [ becomes

X114+ X1 + X317 X1p + X2 + X33 X3 + X3 + X33 1 0 O
X11 X12 X13 =10 1 O
X1 T X371 Xpp T X3 X23 T X33 0 0 1

Although this corresponds to a system of nine equations, it is sufficient to examine just the three
equations corresponding to the first column
X114+ X1 +x31 =1
x11 =0
X1 +x31 =0

to see that subtracting the second and third equations from the first leads to a contradiction 0 = 1.
We conclude that 4 is not invertible.

39. (UB)*AcH(p~tc H~ip~t

= (B~A"H(AC™H)((c™H)~Y(D~1)")p? <“——— Theorem 1.4.6

= (B~ lA™HacH(cp)p? 4——— Theorem 1.4.7(a)

=B 1(A7tA)(Cc7O)(DD™Y) 4———  Theorem 1.4.1(c)
=B~ <4—  Formula (1) in Section 1.4

=B~ 4— property Al = IA = Aonp.43
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40. (ACYH)"l(AC™H(ACY)"lAD™1

= (™ H A HUacH(cH a4 Hap? +—— Theorem 1.4.6

= (A Hac™H(cA HAD? 4———  Theorem 1.4.7(a)

=C(A tA)(c o)A ta) Dt +— Theorem 1.4.1(c)

= CIIID™? <4— Formula (1) in Section 1.4

=CD™?! <4— property Al = IA =Aonp.43
€1 SE41 C1Tn

41. IfR=[rn = T and C=|:|then CR=| ¢ ™ ¢ | and

Cn CnT1 ** CnTp

RC = [ricq + -+ + 1¢,,] = [tr(CR)].

42. Yes, itis true. From part (e) of Theorem 1.4.8, it follows that (4%)7 = (44)T = ATAT = (AT)2. This
statement can be extended to n factors (see p. 49) so that
(An)T = (44 ...A)T = ATAT ... AT = (AT)n

n factors n factors

43. (a) Assuming A4 is invertible, we can multiply (on the left) each side of the equation by A™1:

AB = AC
A71(4B) = A71(AC) <+—  Multiply (on the left) each side by 471
(A7*A)B = (A~1A)C <+——  Theorem 1.4.1(c)
IB=1IC <4— Formula (1) in Section 1.4
B=C 4— property Al =IA = Aonp.43

(b) If Aisnotan invertible matrix then AB = AC does not generally imply B = C as evidenced by
Example 3.

44. Invertibility of A implies that A is a square matrix, which is all that is required.
By repeated application of Theorem 1.4.1(m) and (1), we have

(kA™ = (kA) -+ (kA)(kA) (kA)(kA) = (kA) -+ (kA)(kA) k2A? = (KA) -+ (kA) k343 = - = k" AR
n factors n—2 factors n—3 factors

45. (@) AA*+B YHBA+B)™!

= (AA"'B+ AB™'B)(A+ B)™! 4—— Theorem 1.4.1(d) and (e)
=B+ ANA+B)™? <— Formula (1) in Section 1.4

=B+A)A+B)? —— Pproperty Al =IA = Aonp.43
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=(A+B)(A+B)1 —— Theorem 1.4.1(a)

=] <4— Formula (1) in Section 1.4

(b) We can multiply each side of the equality from part (a) on the left by A~%, then on the right by A
to obtain
(A"'+B Y)B(A+B) tA=1
which shows that if 4, B, and A + B are invertible then sois A~* + B~ L.
Furthermore, (A1 + B™1)"! = B(A + B) ' A.

46. (a) (I —A)?

=l -AUI-4)
=I11—-1A—-Al + AA < Theorem 1.4.1(f) and (g)
=]—A—A+A? 4— property Al = IA = Aonp. 43
=1-A—A+A +— /Aisidempotentso 4> = A
=14

(b) QA-DEA-I)
= (2A)(2A) — 2AI — 1(2A) + 11 4—— Theorem 1.4.1(f) and (g)
=4A4% —-24-2A+1 4— Theorem 1.4.1(l) and (m);

Property Al = IA = Aonp. 43

=44 — 44+ 1 +— Aisidempotentso A> = A

=1

47. Applying Theorem 1.4.1(d) and (g), property AI = IA = A, and the assumption A¥ = 0 we can write
(I—A)(I+A+ A%+ + A2 4 4k
=I—A+A—A2+A2—A3+---+Ak_2—Ak_1-|—Ak_1—Ak

=] — A¥
=[1-0
=1

48, 42— (@@+da+@-bor=[* P Pl-@+a)[* D]+ -] O

:[a2+bc ab+bd]_[a2+da ab + bd [ad—bc 0 ]=[0 0]
ca+dc cb+d? ac +dc ad + d? 0 ad — bc 0 0

True-False Exercises

(a) False. A and B are inverses of one another if and only if AB = BA = I.



(b)

()

(d)
(e)
(0
(8)
(h)
(0]
()]

(k)
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False. (A + B)? = (A+ B)(A+ B) = A2 + AB + BA + B? does not generally equal A? + 2AB + B?
since AB may not equal BA.

False. (A — B)(A + B) = A?> + AB — BA — B? does not generally equal A2 — B? since AB may not
equal BA.

False. (AB)™! = B™1A™! does not generally equal A"1B~1,

False. (AB)T = BTAT does not generally equal A”BT.

True. This follows from Theorem 1.4.5.

True. This follows from Theorem 1.4.8.

True. This follows from Theorem 1.4.9. (The inverse of AT is the transpose of A71.)

False.p(I) = (ap + a; + ay + -+ ap)1.

True.
If the ith row vector of Ais [0 - 0] then it follows from Formula (9) in Section 1.3 that
ithrowvectorof AB = [0 -+ 0]B = [0 - 0].

Consequently no matrix B can be found to make the product AB = thus A does not have an

inverse.
0

If the jth column vector of A is [
0

then it follows from Formula (8) in Section 1.3 that
0
the jth column vector of BA = B |:

I

Consequently no matrix B can be found to make the product BA = I thus A does not have an

inverse.

False. E.g. I and —I are both invertible but I + (—I) = O is not.
1.5 Elementary Matrices and a Method for Finding A™

(a) Elementary matrix (corresponds to adding —5 times the first row to the second row )
(b) Notan elementary matrix

(c) Notan elementary matrix

(d) Notan elementary matrix

(a) Elementary matrix (corresponds to multiplying the second row by v/3)

(b) Elementary matrix (corresponds to interchanging the first row and the third row)

(c) Elementary matrix (corresponds to adding 9 times the third row to the second row)

(d) Notan elementary matrix

(a) Add 3 times the second row to the first row: [(1) ﬂ
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1
200
(b) Multiply the firstrowby —=: [ ¢ 1
00 1

1 0 O
(c) Add 5 times the first row to the third row: [0 1 0]
5 0 1

(d) Interchange the first and third rows:

SR OO
S O =R O
o OO

0

1

1
0
0
0
4. (a) Add 3 times the first row to the second row: [é

(b) Multiply the third row by % :

S O
S R O
wlikro O

(c) Interchange the first and fourth rows:

- o O o
[N e ]
O O O

O R ONIF e—m———

—_

(d) Add > times the third row to the first row:

— S O O

(==l e R en]

-6 —6 —6
-2 5 -1

2 -1 0 -4 —4]

_wWw O o Rrm O

5. (@) Interchange the first and second rows: EA = [

(b) Add -3 times the second row to the thirdrow: EA=| 1 -3 -1 5 3

-1 9 4 —-12 -10

13 28
(c) Add 4 times the third row to the firstrow: EA =| 2 5]
3 6
. ) ] 16 12 =30 6
6. (a) Multiply the firstrowby —6: EA = [3 26 -6 -6

(b) Add —4 times the first row to the second row: EA = 1 -1 21 19

0 1 3 -1

]
2 -1 0 -4 —4
7 |
2

1 4
(c) Multiply the secondrowby 5: EA = |10 25]
3 6
0 0 1
7 (a) [0 1 0] (B was obtained from A by interchanging the first row and the third row)
1 0 0
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0 0 1
(b) [0 1 0| (A wasobtained from B by interchanging the first row and the third row)
1 0 O
1 0 0
(c) 0 1 O0f (€ was obtained from A by adding —2 times the first row to the third row)
-2 0 1
[1 0
(d) [0 1 0| (A was obtained from C by adding 2 times the first row to the third row)
2 0 1
1 0 0
(@) |0 —3 0f (D wasobtained from B by multiplying the second row by —3)
0 0 1
(1 0 0
(b) |O —§ 0| (B was obtained from D by multiplying the second row by — %)
0 0 1
1 0 0
(c) |0 1 2| (F wasobtained from B by adding 2 times the third row to the second row)
0 0 1
1 0 O
(d) |0 1 -2 (B wasobtained from F by adding —2 times the third row to the second row)
0 0 1

(a) (Method I: using Theorem 1.4.5)
The determinant of A4, det(4) = (1)(7) — (4)(2) = —1, is nonzero. Therefore A is invertible

and its inverseis A=1 = —%[—Z _ﬂ = [_Z _ﬂ

(Method II: using the inversion algorithm)

1 411 0] _ ) _ . . )
[2 7 | 0 1l <4——— Theidentity matrix was adjoined to the given matrix.
1 41 1 0] . :
[0 _ | _2 1l <4—— -2 times the first row was added to the second row.
1 41 07 .
[ | <4— The second row was multiplied by —1.
0 112 -—1i
1 0]-7 47 ) .
[0 1 | 2 _1 <4—— —4 times the second row was added to the first row.

The inverse is [_Z _4].

(b) (Method I: using Theorem 1.4.5)
The determinant of A, det(4) = (2)(8) — (—4)(—4) = 0. Therefore A is not invertible.
(Method II: using the inversion algorithm)
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10. (a)

(b)

11. (a)

2 =411 0 . . . - . .
[_4 8 | 0 1] <«— The identity matrix was adjoined to the given matrix.

2 =411 0 . .

[0 0 | 2 1] <—— 2 times the first row was added to the second row.

A row of zeros was obtained on the left side, therefore 4 is not invertible.

(Method I: using Theorem 1.4.5)
The determinant of A4, det(4) = (1)(—16) — (=5)(3) = —1, is nonzero. Therefore A is
invertible and its inverseis A™" = _1[ 3 1] = [ 3 _1l

(Method II: using the inversion algorithm)

1 =511 0] . . . . . .
[ <4— Theidentity matrix was adjoined to the given matrix.
3 —-1610 1l
1 -5 1 07 . .
[0 1 | 3 1 <4—— —3 times the first row was added to the second row.
—511 1
[1 > 0 <4——— The second row was multiplied by —1.
0 113 —11
[é (1) | 12 :i <4——— 5 times the second row was added to the first row.
. . [16 =5
The inverse is [ .
3 -1

(Method I: using Theorem 1.4.5)
The determinant of A4, det(4) = (6)(—2) — (4)(—3) = 0. Therefore A is notinvertible.

(Method II: using the inversion algorithm)

6 411 0

[_3 9 | 0 1] <«—— Theidentity matrix was adjoined to the given matrix.
0 0|1 2 ) :

[_3 9 | 0 1] <4—— 2 timesthe second row was added to the first row.

A row of zeros was obtained on the left side, therefore the matrix is not invertible.

1 2 3|1 0 O
2 5 3|10 1 0 <4—— The identity matrix was adjoined to the given matrix.
1 0 810 0 1
1 2 3 1 0 O
8 _; _g :i é (1) —2 times the first row was added to the second row and




12 3] 10
0 1 -3|-2 1
0 0 —-11-5 2
12 311 0
[O 1 -3|-2 1
0 0 115 =2
1 2 0|-14 6
0 1 of 13 -5
0 0 1 5 =2
1 0 0|—-40 16
0 1 of 13 -5
0 0 1 5 =2
—40 16
The inverseis | 13 -5
5 =2
-1 3 —4]1 0
(b) 2 4 1]0 1
-4 2 =910 O
1 -3 4]-1 0
[ 2 4 11 0 1
—4 -91 0 0
1 -3 4|-1 0
0 10 =7 2 1
0 -10 71-4 0
-3 4|-1 0
! 10 =7 2 1
0l-2 1

_,OoOO RPOO RPROO kOO
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—1 times the first row was added to the third row.

<4—— 2 times the second row was added to the third row.
<«—— The third row was multiplied by —1.
<4—— 3 times the third row was added to the second row and

—3 times the third row was added to the first row.

<4—— —2 times the second row was added to the first row.

The identity matrix was adjoined to the given matrix.
The first row was multiplied by —1.
—2 times the first row was added to the second row and

4 times the first row was added to the third row.

The second row was added to the third row.

<4— Theidentity matrix was adjoined to the given matrix.

<«—— Each row was multiplied by 5.
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1 1 -2 5 0 0
0 0 2| -5 5 0
2
0 -5 2| -5 0 5
2
1 1 -2 5 0 0
0 -5 2| —5 0 5
2
0 0 2| -5 5 0
2 .
11 -2 50 0]
01 —=| 10 =1
2
00 1]1-2 2 o]
11 0] 1 4 07
01 0| 01 -1
0 0 11=2 2 ol
10 0] 1 3 17
010| 01 -1
0 0 11=2 2 ol
13 1
Theinverseis[ 0 1 —1].
2 2 0
-1 1 2
s 5 5|10
b 2 _3 _3
(b) c —: — |01
i 4 1
s 75 100
1 1 -2, 5 0
2 -3 -3 0 5
2
1 -4 | o0 o0
2
1 1 -2 5 0
0 -5 2| —10 5
2
lo 5 2| -5 0
2
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—1 times the first row was added to the second and
—1 times the first row was added to the third row.

The second and third rows were interchanged.

The second row was multiplied by —éand

the third row was multiplied by é

% times the third row was added to the second row and

2 times the third row was added to the first row.

—1 times the second row was added to the first row.

The identity matrix was adjoined to the given matrix.

<«—— Each row was multiplied by 5.

<4—— —2 timesthe first row was added to the second and

—1 times the first row was added to the third row.

<4— —1 timesthe second row was added to the third row.



1.5 Elementary Matrices and a Method for Finding A1

A row of zeros was obtained on the left side, therefore the matrix is not invertible.

1 0 1[1 0
13. 0 1 1|0 1
1 1 o0lo o
10 1] 1 0
[01101
01 —-1l-1 o0
10 1] 1 0
01 1|l 0 1
0 0 —21-1 -1
1 0 1]1 0
0 1 1[0 1
1 1

00 1|5 ; -
1 1
|[100 > T3
1 1
|010_EE
1 1
[00155—

1 _1

[2 2

The inverse is |—l 1
2 2

lll 1

2 2
VZ 3V2 01
4. 142 vZ 0]o0
0 o0 110
1

|f 1303
|—4 1 0] o
| oo 11 o0
1

|f1 3 0| 3
Io 13 0| 2v2
lo o 1] o
1

[1 3 015
2.2

|0 1 0 I3
lo o 1l 0o

[u=y

°8l- e oFlr e o~ o i wim i

SIS

0

NP NPk NP RO O RPOO RPOO PR OO

The identity matrix was adjoined to the given matrix.

—1 times the first row was added to the third row.

—1 times the second row was added to the third row.

The third row was multiplied by —%.

—1 times the third row was added to the second and
—1 times the third row was added to the first row

The identity matrix was adjoined to the given matrix.

Each of the first two rows was multiplied by \/%

4 times the first row was added to the second row.

The second row was multiplied by %

63
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[1 0 0¥
| 26
0 1 0|22
13
0 0 1 0
[V2

| 26

The inverse is 2
13

0

2 6 6]1

15. 2 7 60

2 7 710

2 6 1

[0 1 0]-1

01 11-1

2 6 1
01 0]-1

0o 0 11 0
[2 6 0 1
0 1 0]-1
0 0 11 O
2 0 0] 7
0 1 0]-1
0 0 1 0
10 o] 2
2
0 1 0]-1

0 0 1 0o —
Z 0

2

The inverseis |—1 1
0o -1

1 0 0 O

16. 1 3 0 O

1 3 50

1 3 5 7

1 0 0 O

0 3 0 O

0 3 50

0 3 5 7

|
_O Rk RO

_32

26

V2
26

3v2

26

V2

26

__-0 ORFRrR O OO

|
=N
|

OO0 PO POO RPOO R, OO

= o W

SO RrRr O OOoORrOo

ORr OO0 OFRr OO

<4—— —3 times the second row was added to the first row.

<4—— Theidentity matrix was adjoined to the given matrix.

<4—— —1 timesthe first row was added to the second and

—1 times the first row was added to the third row

<4—— —1 timesthe second row was added to the third row.

<4—— —6 timesthe third row was added to the first row

<4—— —6 times the second row was added to the first row

<4——— The first row was multiplied by %

OO0 kR OOoOOo

The identity matrix was adjoined to the given matrix.

<4—— —1 times the first row was added to each of the
remaining rows.
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1 0 0 O] 1 0 0 0]
8 3 g 8 _(1) _1 2 8 <4+—— —1 times the second row was added to the third row
0 0 5 7 0 -1 0 1 and to the fourth row.
1 0 0 O 1 0 0 0]
8 (5; (5) 8 _é _1 2 8 <4——— —1 times the third row was added to the fourth row
00 0 71 0 0 -1 11
1 0 0 O 1 0 0 0]
0100[-3 3 0 0
1 1 <4— The second row was multiplied by %
0 01 0 0 -3 P 0 _ o |
the third row was multiplied by o and
0 0 0 1 0 0 _1 1 the fourth row was multiplied by %
7 7 -
1 0 0 0
S
3 3
The inverse is 1 1 .
0 —-= =0
5 5
1 1
0 0 -7 7
2 —4 0 0|1 0 0 0]
17. é g 13 g g é 2 8 <+— The identity matrix was adjoined to the given
0 _1 _4 _5 0 0 0 1 | matrix.
1 2 12 0|0 1 0 0]
2 —4 0 01 0 0 O : .
0 0 2 olo o0 1 o <4—— Theffirst and second rows were interchanged.
0 -1 -4 =510 0 0 1.
[1 2 12 0]0 1 0 0]
g _g —2‘21- g é _3 (1) 8 <4——— —2 times the first row was added to the second.
[0 -1 -4 510 0 0 11
[ 1 2 12 0]0 1 0 0]
8 _é —‘21- _g 8 8 g é <«— The second and fourth rows were interchanged.
|0 -8 -24 ol1 -2 0 0]
[1 12 0] 0 1 0 0]
0 1 4 510 0 0 -1 -
0 0 2 0olo 0 1 0 <4——— The second row was multiplied by —1.
[0 -8 —-24 011 -2 O 0]
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1 2 12 0]0 1 0 0]
0 1 4 510 0 0 -1 .
0 0 2 ol o 0 1 0 <4—— 8 times the second row was added to the fourth.
0 0 8 4011 -2 0 -8
[ 1 2 12 010 1 0 01
l 01 4 s5/0 00 -1 )
| 1 <«—— The third row was multiplied by -.
0 0 1 010 0 2 0 2
0 0 8 40!'1 -2 0 -8
[ 1 2 12 010 1 0 01
| 01 4 slo o o -1
| 1 <4—— —8 times the third row was added
| 00 1 0j]0 0 2 0 to the fourth row.
l 0 0 0 40!'1 -2 -4 -8/
1 2 12 07 O 1 0 01
0 1 4 510 0 0o -1
1 <«— The fourth row was multiplied by %.
0 0 1 0| O 0 - 0
2
1 1 1 1
1 2 12 O 1 0 01
1 1 1
0 1 4 0 ~3 " > 0
1 <4—— —5 times the fourth row was added
0 0 10 0 0 2 0 to the second row.
1 1 1 1
0 0 0 1 o 20 1o s
1 2 0 O 1 —6 0
0100[-x <+ -2 0
1 <4—— —4 times the third row was added
0 01O 0 0 2 0 to the second row and
1 1 1 1 —12 times the third row was added
0 00 1 5 —55 —10 ~:=d to the first row.
100 0 2 1 3
4 2
0100 _% i _g 0
1 <4—— —2 times the second row was added
0 010 0 0 > 0 to the first row.
ooo0 1|+ - _+ _1

N
o
N
o
[uny
o
(428



18.

The inverse is

S O O

S OO R OOOK

S OO R OOO

S O RO

NOORFR NORFRO

[o< T IS N =

o

T
IS
o

_h, R, OO Rk OO
GTWINO UTWON

o

U
UGN WO UTwiN O
|

O WO 1IN WwWOo

coRrO RrRORO
|
Moo Rr 1o OoOR

I
oNnwo

U1 O O

1O O R U1O O

B R, OO0 OFrRrP OO0 OFr oo

WO O Rr WO RrOo

o

o

vl N

|
N
o|"‘ O R NR

-3
_3

2

l

2

1
10

1 0 0
01 0
0 0 1
0 0 O
0 1 0
1 0 0
0 0 1
0 0 O
0 1 0
1 0 0
0 0 1
0 -2 0
0 1 0
0 0 1
1 0 0
0 -2 0
1 0

0 -1
0 0
-2 0
1 0

0 -1
0 0
-2 1
1 0

0 -1
0 0
-2 1
1 0
0 -1
0 0
2 _1
5 5

PO OO RPOOO RPOOO RPOOO RPOOO RPOOO RrROOO

1.5 Elementary Matrices and a Method for Finding A1 67

The identity matrix was adjoined to the given matrix.

The first and second rows were interchanged.

—2 times the first row was added to the fourth row
and to the fourth row.

The second and third rows were interchanged.

The second row was multiplied by —1.

—1 times the second row was added
to the fourth row.

—4 times the third row was added
to the fourth row.

The third row was multiplied by % and

the fourth row was multiplied by —%.
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1 0 0
01 0
0 0 1
0 0 O

The inverse is

k;, 0
19.(a)8k(2)
0 0
10
0 1
00
00

The inverse is

(b)

SO -

— oo o

o O O =

S O - xR

o & O O

s NIRr NlWw uld

S =Bk O O

vild NIRr NJWw s

| w

u|N

= =0 O

o © O

= X, o o

vl w

S O O R

S O O r

S O O =x|Ir

SO r O

[N

o

o O R O OO Rr o

o

1
.

o xRk O O SR OO

[N
|

ul| =
L

_ o oo

o oo

= o o O

<4—— —1 timesthe fourth row was added to the first row

and
3 times the third row was added to the second.

<—— Theidentity matrix was adjoined to the given matrix.

<«——— The first row was multiplied by 1/k;,
the second row was multiplied by 1/k,,
the third row was multiplied by 1/k5, and
the fourth row was multiplied by 1/k, .

<4—— The identity matrix was adjoined to the given matrix.

<«——— First row and third row were both multiplied by 1/k.
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[1 0.0 0p= -2 9 0]
1 ..
| 010 0o 1 0 0| - t|me's the fourth row was added
1 1 <4——— tothe third row and
00 1 0o 0 & —%timesthe second row was added
0 0 0 19 0 0 1 to the first row.
1 1
i
1
The inverse is i (1) ?i
0 0% %
l0 0 0 1J
[ 0 0 0 ki1 0 0 0]
0 0 k, O
20. (a) 0 ks 02 0 8 é (1) 8 <4——— The identity matrix was adjoined to the given matrix.
l k, 0 O 010 O O 1.
(k, 0 O 0o 0 0 1]
0 k3 O 0fo o 1 o0 The first and fourth rows were interchanged;
0 0 k;, O|l0O 1 0 O the second and third rows were interchanged.
[ 0 0 0 Kk I1 0O 0 O]
(1.0 0 0j0 0 0 —]
L
0100]o0o o o The first row was multiplied by 1/k,,
ks the second row was multiplied by 1/k5,
00 1 0 0 1 0 0 the third row was multiplied by 1/k,, and
ko the fourth row was multiplied by 1/k; .
000 1|1 0 0 o0
| Ky |
1_
0 0 O P
00 =0
The inverse is 1 ’
0 — 0 O
k2
1
e 0 0 O
k 00 0]J1T 0 0 O
(b) (1) I; 2 8 g é 2 8 <4——— Theidentity matrix was adjoined to the given matrix.
0 01 kK10 0 0 1
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1000 [+ 000
% 100 |o % 00
1 ) <«—— Each row was multiplied by 1/k.
0 =10 0 0 =0
k k
00 =11]000 2
k k-
100 0 % 000
0100 |-= 200
k k 1 .. .
. L «— - times the first row was added
0 p 1 0 0 0 p 0 to the second row.
1 1
0 0 p 1 0 0 O %
100 0 = 0.0 0
0100 |- =00
k k 1 ..
L L — - times the second row was added
0 0 1 0 = e % 0 to the third row.
1 1
0 0 p 1 0 0 o0 %
1000 + 0 00
0100|-% + 00
. L ) — —%timesthethird row was added
0 01 0 © e % 0 to the fourth row.
1 1 1 1
000 17=a & T &l
% 0 0 0
The inverse is .
I )
k3 k2 k
_+r 1 _1 1
B k4— k3 k2 kA

21. It follows from parts (a) and (d) of Theorem 1.5.3 that a square matrix is invertible if and only if its
reduced row echelon form is identity.

C C C 1
[100

1 1 c

1 1 c
[ 1 ¢ c <4—— Thefirst and third rows were interchanged.
c ¢ c |
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1 1 c
0 —-1+4c¢ 0 «—
0 0 c—c?

—1 times the first row was added to the second row and
—c times the first row was added to the third row.

Ifc—c?=c(l1—c)=0or—1+c=0,ie. if c=0 orc =1 the last matrix contains at least one
row of zeros, therefore it cannot be reduced to I by elementary row operations.

Otherwise (if c # 0 and ¢ # 1), multiplying the second row by j and multiplying the third row by

would result in a row echelon form with 1’s on the main diagonal. Subsequent elementary row

c—c?
operations would then lead to the identity matrix.

We conclude that for any value of ¢ other than 0 and 1 the matrix is invertible.

It follows from parts (a) and (d) of Theorem 1.5.3 that a square matrix is invertible if and only if its

reduced row echelon form is identity.

c 1 0]
1 ¢ 1
0 1 c|
[1 ¢ 1 ]
c 1 0 <4——— Thefirst and second rows were interchanged.
[0 1 ¢ |
[1 ¢ 1 ]
01 ¢ <4——— The second and third rows were interchanged.
lc 1 0 |
1 c 1 7
0 1 c <4——— —c times the first row was added to the third row.
0 1—-c?> —c |
1 ¢ 1
0 1 c <4—— ?—1 times the second row was added to the third.
0 0 c3—2c |
If c3—2c=c(c?-2)=0,ie. ifc=0,c= V2 or ¢ = —/2 the last matrix contains a row of zeros,

therefore it cannot be reduced to I by elementary row operations.

1
c3-2¢
1’s on the main diagonal. Subsequent elementary row operations would then lead to the identity

would result in a row echelon form with

Otherwise (if c® — 2¢ # 0), multiplying the last row by

matrix.
We conclude that for any value of ¢ other than 0,+/2 and —v/2 the matrix is invertible.

We perform a sequence of elementary row operations to reduce the given matrix to the identity
matrix. As we do so, we keep track of each corresponding elementary matrix:

-3 1
2 2
1 2]

[ % g ] 2 times the second row was added to the first. E, = [0 1
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[ (1) _2 <—— —2 times the first row was added to the second. E, = _; (1)
15 N ) oo

0 1 <4——— The second row was multiplied by s E; = 0 _1

8l

1 0] _ _ 1 -5

[ 0 1 <4—— —5 times the second row was added to the first. E, = 0 1

Since E,E;E,E;A =1, then
3 4 detm—1e— {1 =271 O1f1 011 5
A = (E,EsE,E))~\1 = E[YE;ES 1E; _[0 1][2 1][0 _8][0 | and

e[l 0
A‘1=E4E3E2E1=[é i][o _%][_é ‘1)][3 f

Note that this answer is not unique since a different sequence of elementary row operations (and the
corresponding elementary matrices) could be used instead.

We perform a sequence of elementary row operations to reduce the given matrix to the identity
matrix. As we do so, we keep track of each corresponding elementary matrix:

_ 1 07
A=]_g
10 . . ~1 0
[0 2 <4——— 5 times the first row was added to the second row. E; = [5 1]
10 ) 1 0
[0 1 <4—— The second row was multiplied by . E, = 0 1
2

10
. _ _ 1y _pm-1p-1_[ 1 01711 O -1 _ _ 1 0
Since E,E;A=1, A= (E,E) Y =E'E;!= [_5 1] [0 2] and A~! = E,E, = - [5 1].
2
Note that this answer is not unique since a different sequence of elementary row operations (and the
corresponding elementary matrices) could be used instead.

We perform a sequence of elementary row operations to reduce the given matrix to the identity
matrix. As we do so, we keep track of each corresponding elementary matrix:

10 -2

A=|0 4 3
[0 0 1
[1 0 —2] 1 0 0
0 1 % <—Thesecondrowwasmultipliedby%. E; =10 % 0
[0 O 1] 0 0 1
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1 0 -2] [1 0 0
[0 1 0 4——%timesthethirdrowwasaddedtothesecond. E,=10 1 —%
00 1l 0 0 1
1 0 0] [1 0 2
0 1 0| <«———2 timesthe third row was added to the first row. E;=10 1 O
0 0 11 0 0 1
1o o]t 090 o -2
Since E3E;E1A =1, wehave A = (E3E,E)™" I =E{'E;'E3' =0 4 0[f0 1 Z||0 1 0
0 0 1flp o 1/10 O 1
1 0 2 0 0 O
and A1 = E,E,E, =0 1 0] Z > 0.
0 0 1 0 1

Note that this answer is not unique since a dlfferent sequence of elementary row operations (and the
corresponding elementary matrices) could be used instead.

We perform a sequence of elementary row operations to reduce the given matrix to the identity
matrix. As we do so, we keep track of each corresponding elementary matrix:

[1 1 0]
A=1|1 1 1
[0 1 1.
[1 1 0] 1 0 0
0 0 1| <«———1 timesthe first row was added to thesecondrow. E;=]—1 1 0
[0 1 1. 0 0 1
[1 1 0] 1 0 O
0 1 1| <«——— Thesecond and third rows were interchanged E,=(0 0 1
[0 0 11 0 1 0
[1 1 0] [1 0 07
0 1 0| <«—— —1 timesthe third row was added to the second. E;z=10 1 -1
[0 0 11 0 0 1.
[1 0 0] [1 —1 O]
0 1 0| <«—— —1 timesthe second row was added to the first row. E, =10 1 0
[0 0 1. 10 0 1l

Since E,E;E,E{A = I, we have

1 0 01 0 OJf1 0 OJf1 1 0
A=(E4E3E2E1)‘11=E1‘1E2‘1E3_1E4_1=[1 1 0”0 0 1”0 1 1”0 1 0] and
0 0 0 1 ollo o 1llo 0 1
—1 0 0111 100
A‘1=E4E3E2E1— ” —1”0 ” 1 1 0].
1110 0 0 1

Note that this answer is not unique since a different sequence of elementary row operations (and the
corresponding elementary matrices) could be used instead.

Let us perform a sequence of elementary row operations to produce B from A. As we do so, we keep
track of each corresponding elementary matrix:
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1 2 3]
A=1|1 4 1
2 1 9]
(1 2 3] 1 0 0]
0 2 -2 <4——— —1 times the first row was added to the secondrow. E;=]-1 1 0
|2 1 9] 0 0 1l
1 0 57 1 —1 0]
0 2 -2 <«——— —1 times the second row was added to the firstrow. E> = |0 1 0
2 1 9] 10 0 11
1 0 57 1 0 0]
B=]0 2 —2| <4——— -1 timesthe first row was added to the third row. Es=| 0 1 0
|1 1 4 | -1 0 11

Since E3E,E;A = B, the equality CA = B is satisfied by the matrix

1 0 0 —1 0 1 0 0 —1 0
010 -1 1 0
-1 0 1 0 01

Note that this answer is not unlque since a different sequence of elementary row operations (and the

C = E3E2E1 =

corresponding elementary matrices) could be used instead.

Let us perform a sequence of elementary row operations to produce B from A. As we do so, we keep
track of each corresponding elementary matrix:
2 1 0]
A=]-1 1 0
3 0 -1
2 1 0 1 0 0]
-5 -1 0| <«——— —2 times the first row was added to the second. E;=1-2 1 0
3 0 - [ 0 0 1l
2 1 0 0 0]
-5 -1 0| <«——— —2 timesthe first row was added to the thirdrow. E, =] 0 1 0
-1 -2 -1 -2 0 1l
6 9 4 [1 0 —47
B=]-5 -1 0| <«———— —4 timesthe third row was added to the firstrow. E3 =[]0 1 0
-1 -2 -1 0 0 1.
Since E3E2E1A = B the equality CA = B is satisfied by the matrix
—4 1 0 0 1 0 0 9 0 -4
CE3E2E1—01 0 1 0l|-2 1 0|=|-2 1 0f.
-2 0 1 0 0 1 -2 0 1
Note that a different sequence of elementary row operations (and the corresponding elementary
matrices) could be used instead. (However, since both A and B in this exercise are invertible, C is
uniquely determined by the formula C = BA™1)
1 0 0
A=10 1 0] cannotresult from interchanging two rows of I3 (since that would create a nonzero
a b c

entry above the main diagonal).
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A can result from multiplying the third row of I3 by a nonzero number ¢
(in this case,a = b =0, c # 0).

The other possibilities are that A can be obtained by adding a times the first row to the third
(b =0,c = 1) or by adding b times the second row to the third (a = 0,c = 1).

In all three cases, at least one entry in the third row must be zero.
Consider three cases:

e Ifa = 0then A has a row of zeros (first row).
e Ifa # 0and h = 0 then A has a row of zeros (fifth row).
e Ifa # 0andh # 0then adding — % times the first row to the third, and adding — % times the fifth

row to the third results in the third row becoming a row of zeros.

In all three cases, the reduced row echelon form of 4 is not I5. By Theorem 1.5.3, A is not invertible.

True-False Exercises

()

(b)
()

(d)

(e)

0

(8)

False. An elementary matrix results from performing a single elementary row operation on an
identity matrix; a product of two elementary matrices would correspond to a sequence of two such
operations instead, which generally is not equivalent to a single elementary operation.

True. This follows from Theorem 1.5.2.

True. If A and B are row equivalent then there exist elementary matrices Ej, ..., Ej, such that
B = E, --- E; A. Likewise, if B and C are row equivalent then there exist elementary matrices Ej, ..., Eg
such that C = Ej --- E{ B. Combining the two equalities yields C = E; --- E{E,, --- E;A therefore A and

C are row equivalent.

True. A homogeneous system Ax = 0 has either one solution (the trivial solution) or infinitely many
solutions. If A is notinvertible, then by Theorem 1.5.3 the system cannot have just one solution.
Consequently, it must have infinitely many solutions.

True. If the matrix 4 is not invertible then by Theorem 1.5.3 its reduced row echelon form is not I,,.
However, the matrix resulting from interchanging two rows of A (an elementary row operation)
must have the same reduced row echelon form as A does, so by Theorem 1.5.3 that matrix is not
invertible either.

True. Adding a multiple of the first row of a matrix to its second row is an elementary row operation.
Denoting by E be the corresponding elementary matrix we can write (EA)™! = A71E~1 so the
resulting matrix EA is invertible if A is.

False. For instance, [(1) (1)] = [162 (1)] [3 (1)] = [163 2] [8 2]
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1.6 More on Linear Systems and Invertible Matrices

1 The given system can be written in matrix form as Ax = b, where 4 = [1 1] X = [x1] andb = [2]
" g y - ’ - 5 6 1) - x2 1) - 9 .

We begin by inverting the coefficient matrix A

1 111 0] . . . . . .
[5 6lo 1. <—— Theidentity matrix was adjoined to the coefficient matrix.
1 11 1 0 . .
[0 1l_5 1. <4—— -5 times the first row was added to the second row.
1 0] 6 -—17 . .
[0 1l _s 1 <4—— —1 timesthe second row was added to the first row.
6 —1

Since A™! = [_5 1] , Theorem 1.6.2 states that the system has exactly one solution x = A~ 1b:

=16 IB=3ies=5 =1

— X
2. The given system can be written in matrix form as Ax = b, where A = [;L _g , X = [x;]’ and
b= [_(3)] We begin by inverting the coefficient matrix A
4 =311 0] . . . _ - .
[2 —slo 1. <—— Theidentity matrix was adjoined to the coefficient matrix.
2 =510 1] . .
4 —311 o0 <4——— The first and second rows were interchanged.
2 =510 17 . :
0 711 -2 <4—— —2 times the first row was added to the second row.
1 —g o 1%
z < The first row was multiplied by %and
0 1 7 the second row was multiplied by %
5 3
1 0 7 12 :
) ) D — B times the second row was added to the first row.
0 11z -
7 74
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5 3
Since A71 = 114 1; , Theorem 1.6.2 states that the system has exactly one solution x = A™1b:
77
S _3
xX11 _ |14 14[1-31 _ [-37. o
[xz] 1 2 [ 9] = [_3], le,x;y =x, =—3.
7 7

The given system can be written in matrix form as Ax = b, where A =

1 3 1 X1
2 2 1],x=[x2],and

2 3 1 X3
4
b = |—-1|. We begin by inverting the coefficient matrix A
3
1 3 111 0 0]
2 2 1]0 1 0 <4——— The identity matrix was adjoined to the coefficient matrix.
2 3 110 0 1.
1 3 11 1 0 0]
0 4 —-1|-2 1 0 <——— —2 times the first row was added to the second and
0 -3 —-11-2 0 11 —2 times the first row was added to the third row.
1 3 11 1 0 0]
0 -4 -1|-2 1 0 <4——— —1 timesthe second row was added to the third row.
0 1 ol 0 -1 11
1 3 11 1 0 07
0 1 of 0 -1 1 <4——— The second and third rows were interchanged.
0 —4 -—-11-=-2 1 0
1 3 1] 1 0 07
0 1 o] 0 -1 1 <4+—— 4 timesthe second row was added to the third row.
0 0 —-11-2 -3 41
1 3 1|1 0 07
0 1 0j]0 -1 1 <4——— The third row was multiplied by —1.
0 0 112 3 —4]
1 3 0]—-1 -3 47
0 1 0of 0 -1 1 <4—— —1 times the third row was added to the first row.
0 0 11 2 3 —4]
[1 0 0]-1 0 17
0 1 of 0 -1 1 <4——— —3 times the second row was added to the first row.
0 0 11 2 3 —4]

1 0 1
0 -1 1] , Theorem 1.6.2 states that the system has exactly one solution
2 3 —4

X1 -1 0 1 4 -1
x=A"1b: |%|=| 0 -1 1||-1|=]| 4|ie,x;=-1,x,=4,andx; = —7.
3 —4]ll 3 -7

X3 2

77
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4, The given system can be written in matrix form as Ax = b, where A =

4
b=

5

| ————
S w U

| ————
S Wi
_ W o

S W =
= W o

S
= W O

| —
(@)
w = o

=

| ——|
o O
S B~k O
o

= N O

=W Ww

=N O

[UnN

NIWN[WN]|R

= NN

|
©S O wNIRr oo r

Njw O Nk O NIWwN]|R

Njw O NP

Njw O N

S O =

S R NIRrR ORFR KRR ORFR O

Nl © Nk O NuN|R

| N © NR

I
Nl O N

NN N]|R

o

I
w

|
w N o

= o O oo kL OO

S B O = O O

w = o

2]. We begin by inverting the coefficient matrix A

The identity matrix was adjoined to the coefficient matrix.

—1 times the second row was added to the first row.

The first row was multiplied by %

—3 times the first row was added to the second row.

The second and third rows were interchanged.

—3 times the second row was added to the third row.

The third row was multiplied by —1.

—1 times the third row was added to the second row.



Since A™! = {
X1

x = A"1b: |x;
X3

5
b=

0

1 1
1 1
-4 1
(1 1
0 0
[0 5
1 1
0 5
0 0
1 1
0 1
0 0
[11
I01
{00
[10
I01
{00

N = S NS, NS, S S, G5, I

o [e]

—_

vk uilw vk

N|JWN[WN]|R

3

The given system can be written in matrix form as Ax = b, where A =

(SR NN

-2

N|wN|wN|p—nN|U'lN|U'lN|P—‘
w

o
—_—

i

NN N

| |
P AR AR R OOR

vk © © RPOO OFrRr O ORFr o

vk uilw wuild vilr s =
ullkr vk vl R

o

UilRr vl

o vk © OFR O POO rOoOOo

o o

R R
|
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, Theorem 1.6.2 states that the system has exactly one solution

0
l 4 1

=212l =1[|-11}],i.e,x; =1,x, = —11,and x3 = 16.
3J 5 16

B -
=R

1 X
—4], X = [y], and
1 z

10]. We begin by inverting the coefficient matrix A

The identity matrix was adjoined to the coefficient matrix.

—1 times the first row was added to the second row and
4 times the first row was added to the third row.

The second and third rows were interchanged.

The second row was multiplied by % and

the third row was multiplied by — .

5

—1 times the third row was added to the second row
and to the first row.

—1 times the second row was added to the first row.

o

79
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-
o
I
(RS
—_

Since A™1 =

(SN

, Theorem 1.6.2 states that the system has exactly one solution x = A~ 'b:

|= R

vuilr uilw wui|rk

|
0]

o ——

ik Ui

5 1
[10] = [ 5], ie,x=1y=5andz =—-1.
0 -1

—

N < R

[ |

Il

U] = ml: U] =
[
U= U=
(en]
e e ] U

0 -1 -2 -3

1 1 4 4

1 3 7 9|
-1 -2 -4 -6

The given system can be written in matrix form as Ax = b, where A =

w 0
X = ;c} ,and b = Z . We begin by inverting the coefficient matrix A
z 6
0 -1 -2 -3|1 0 0 0]
1 1 4 410 1 0 O The identity matrix was adjoined to the coefficient
1 3 7 910 0 1 O matrix.
-1 -2 -4 —-6[0 0 0 1]
1 1 4 410 1 0 O]
0 -1 -2 -3|1 0 0 O The first and q interch d
1 3 7 9lo 0 1 o <«—— The first and second rows were interchanged.
-1 -2 -4 —-610 0 0 1.
[ 1 1 4 410 1 0 0]
0 -1 -2 =31 000 <4—— —1 times the first row was added to the third row
0 2 3 5(0 -1 1.0 and the first row was added to the fourth row
|0 —1 0 =210 1 0 1] '
[ 1 1 4 4 0 1 0 0]
0 1 2 31—1 0 0 O h q ltiolied by —1
0 2 3 5 0 -1 1 0 <4+— The secona row was multiplied by .
| 0 -1 0 -2 0 1 0 1.
(1 1 4 4 0 1 0 0]
01 2 3(-1 000 <4—— —2 times the second row was added to the third row
00 -1 -1 2 -110 and the second row was added to the fourth
[0 O 2 11-1 1 0 11 '
1 1 4 4] 0 1 0 0]
g (1) i i :% 2 _2 8 <«—— The third row was multiplied by —1.
0o 0 2 11-1 1 0 1.
1 1 4 4 0 1 0 0]
0 1 2 31—1 0 0 O ) .
0 0 1 1| =2 1 -1 0 <4—— —2 times the third row was added to the fourth.
0o 0o 0 —-11 3 -1 2 1]
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1 1 4 4] 0 1 0 0]
8 (1) i i :; (1) _2 8 <«— The fourth row was multiplied by —1.
o 0 0 11-3 1 -2 -1
[1 1 4 0]12 -3 8 47
01 2 0] 8 -3 6 3 —1 times the last row was added to the third row,
0 0 1 O0f 1 0 1 1 —3 times the last row was added to the second row
|0 0 0 11-3 1 -2 -1 and —4 times the last row was added to the first.
[1 1 0 0] 8 -3 4 0]
01 0 0| 6 -3 4 1 —2 times the third row was added to the second row
0 0 1 O 1 0 1 1 and
|0 0 0 11-3 1 -2 -1/ —4 times the third row was added to the first row.
[1 0 0 O] 2 0 0 —17
01 0 0| 6 -3 4 1 ) )
00 1 0 1 0 1 1 <4—— —1 timesthe second row was added to the first.
[0 0 0 11-3 1 -2 -1
2 0 0 -1
Since A™! = ? g 11} 1 , Theorem 1.6.2 states that the system has exactly one solution
-3 1 -2 -1
w 2 0 0 -—11]0 —6
-1, X 6 —3 4 {171 _| 1
A7b: y 1 0 1 1|]|4| |10f
z -3 -2 1 6 -7
ie,w=—-6x= =10, andz =—

X
The given system can be written in matrix form as Ax = b, where A = [i o X = [x;]' and

b= [Zl] We begin by inverting the coefficient matrix A
2

1 07
[ :; ; | 0 1 <4——— The identity matrix was adjoined to the coefficient matrix.
1 210 17 . .
[ 3 5 | 1 0l <4——— Thefirst and second rows were interchanged.
0 1 . .
[ 0 —1 | <4—— —3 timesthe first row was added to the second row.
1 2 0 17 o
[ <4— The second row was multiplied by —1.
0 11—-1 31
1 . |
[ 0 1 | -1 3 <4—— —2 timesthe second row was added to the first row.
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Since A™1 = [_i _g] , Theorem 1.6.2 states that the system has exactly one solution x = A™1b:
x1 _ 2 —5 b1 _ Zbl - 5b2 . _ _
B]=12 3] [bz] _ [—b1 . 3b2], ie,  x, =2b,—5b, x,=—b; +3b,
1 2 3 X1
The given system can be written in matrix form as Ax = b, where A=|2 5 5|, x=|Xz|, and
3 5 8 X3
b1
b = |b,|. We begin by inverting the coefficient matrix A
b
(1 2 3|1 0 0]
2 5 5/]0 1 0 <4——— The identity matrix was adjoined to the coefficient matrix.
|3 5 810 0 1.
1 2 3 1 0 0] ) i
0 1 -1l=2 1 o - —2 times the first row was added to the second row and
0 -1 —-11-3 0 1 —3 times the first row was added to the third row.
1 2 3 1 0 07
01 —-11—-2 1 0 <4——— The second row was added to the third row.
0 0 —2I-5 1 11
1 2 3 1 0 01
[0 1 —-1|-2 1 0 <4——— The third row was multiplied by _——
lo o 1] 2 -2 — 2
2 2 2
13 3 3 -
L2 0= 3 3
0 1 0 1 i 1 The third row was added to the second row and
2 2 2 —3 times the third row was added to the first row.
5 1 1
00 1% 3 =3 ~3
15 1 5
1 0 0 ey > >
1 1 1
0 1 0 > > 3 <4——— —2 times the second row was added to the first row.
5 1 1
00 1% 5 =3 ~3
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15 1 5
== @ 7
. _ 1 1 1 .
Since A™1 = 3 > 3l Theorem 1.6.2 states that the system has exactly one solution
5 1 _1
2 2 2
15 1 5 15 1 5
=2 3 3], [TEhitabatiby
%1 1 1 1 bl 1 1 1
= A" 1p: X = - - == = - - [ — i
X A b 2 2 > > bZ 2 b1 + > b2 > b3 , 1.€.,
& 5 1 1 b3 5 1 1
2 77 7z 201730273 hs
15 1 5 1 1 1 5 1 1
x1:_7b1 +5b2 +Eb3, xzzzbl +Eb2_5b3, and x3:Eb1_Eb2_Eb3.
. We augmented the coefficient matrix with two columns
1 -5]11|-2 ) .
9. [ | — of constants on the right hand sides of the systems
3 214 51 . ..
(i) and (ii) — refer to Example 2.
[ L= | L2 — —3 times the first ro as added to the second ro
o 17111 11 i i ww w.
1 =511 -2]7
0 1|1 11 — The second row was multiplied by %
1 17
1 02 |2
117 iz <+«——— 5 times the second row was added to the first row.
0 11371717
We conclude that the solutions of the two systems are:
D ox =2 =Ll () g =2, 1
B x-= 7 %2 T3 () x, = 17 X2 =1
[—1 4 110 —3]7 We augmented the coefficient matrix with two columns
10. 1 9 =211 4 <4———  of constants on the right hand sides of the systems
6 4 -8101-5 (i) and (ii) — refer to Example 2.
1 -4 —-1]0 3]
1 9 =211 4 <4———  The first row was multiplied by —1.
6 4 —-8101—-5]
1 -4 —-1]0 3]
0 13 -1]1 1 <4———  —1 times the first row was added to the second row and
0 28 =2101 =231 —6 times the first row was added to the third row.
1 -4 -11]0 3
o 1 2|2 & Th d ltiplied by —
= " — e second row was multiplied by —.
0 28 -=-2101-23
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[1 -4 -1 | 0 37
| 1 1 1
| 0 1 13 13 13 <4———  —28 timesthe second row was added to the third row.
2 28 327
Lo o Sli-5l1-3)
[ 1 4 -1 0 37
o 1 -—-=X 1 1 . . 13
13 13 13 <4——  The third row was multiplied by PX
327
0 0 1 — 14 - |
321 -
[1 -4 0 -14 | —=
| 2
25
| 0 1 0 -1 -5 — % times the third row was added to the second row
| 327 and the third row was added to the first row.
lo o 1l -141-=]
421 -
[1 0 0 -18 ) ——
25
| 01 0 -1 - <4——— 4 times the second row was added to the first row.
327
0 0 11 -141-=-]

We conclude that the solutions of the two systems are:
421 25 327

(i) X1=_18, x2=—1, X3=_14' (ii) x1=—7, x2=—7, x3=_T.

We augmented the coefficient matrix with four columns

4 —-710]1—4] -1 -5]
[ 1 2 | 1 | 6 | 3 i <+—  of constants on the right hand sides of the systems
| (i), (ii), (iii), and (iv) — refer to Example 2.
1 211 6 3 1] ) .
[4_ —7 | 0 | —4 | 1| =5 <4———  Thefirst and second rows were interchanged.
1 2 1 6 3 1]
[O _1s5 | _4 | _28 | ~13 | —9 — —4 times the first row was added to the second row.
1 2 116] 3|1
0 1 4 (28] 13| 3 <4——  Thesecond row was multiplied by —i.
15 l15] 15 | 5 ‘
1 ol Z (22|22
15 |15] 15 5 . X
0 1|24 28] 3 3 — —2 times the second row was added to the first row.
15 |15] 15 5

We conclude that the solutions of the four systems are:

. 7 4 . 34 28
(1 X1 =19 %2 = (i) X1=15 %2 = ¢

19 13 . 1 3
(iii) X1 =10 X2 = (iv) X1 =—2, X =¢



12.

13.

14.

1 3 5| 1|0 |-1]
-1 -2 0] 0|1(-1
2 5 41-1111 0l

[ 1 3 51 110 |-1]
0 1 51 1]1]|-2
[0 -1 —-61-3111 2
1 3 5] 10 |-1]

0 1 51 1(1]-2

0 0 —-11-2121 0l

1 3 5|1 0 |—1]
01 5|1 1(-2

0 0 1121-=21 o0l

1 3 0|—-9] 10 |—-1]
01 0]-9]| 11(-2
0 01 21-=21 0l
1 0 0| 18| —23 ]| 5]
01 0]-9 11 |-2
0 0 1 2 =21 0l
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We augmented the coefficient matrix with three columns

of constants on the right hand sides of the systems
(i), (ii) and (iii) — refer to Example 2.

The first row was added to the second row and
—2 times the first row was added to the third row.

The second row was added to the third row.

The third row was multiplied by —1.

—5 times the third row was added to the first row

and to the second row.

—3 times the second row was added to the first row.

We conclude that the solutions of the three systems are:

(i) X1 = 18, Xy = _9, X3 = 2

(ii) X1 = _23, Xy = 11, X3 = -2

(ili) X1 = 5, Xy = —2, X3 = 0

[ 1 3| bq]
-2 1| byj

[1 3 by
0 71 2by+ by]

1 3 b,

2 1

0 1 7b1 + ;bz_

4

4—

4—

The augmented matrix for the system.
2 times the first row was added to the second row.

The second row was multiplied by %

The system is consistent for all values of b; and b,.

6 —4 | by
[ 3 -2 | b,
1 =21y
3 —2| by
2 1
L -3 &
0 0]|—3bi+h

4—

4—

4—

The augmented matrix for the system.

The first row was multiplied by %.

—3 times the first row was added to the second row.
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The system is consistent if and only if —%bl +b, =0,ie by =2b,.

1 -2 5)b]
15. 4 -5 8|b,
-3 3 —3| bs]
1 -2 5 b,
0 3 —12|—4b, +b,
0 —3 12| 3by+bs |
1 -2 5 b,
0 3 —12| —4b,+b,
0 0 0| —by+by+bs |
1 -2 5 b,
0 1 —4| —Zhi+:b
0 0 0| —by+by+bs |

<«—— The augmented matrix for the system.
<4—— —4 times the first row was added to the second row
and 3 times the first row was added to the third row.

<4—— The second row was added to the third row.

<4——— The second row was multiplied by %

The system is consistent if and only if — b; + b, + b3 = 0,i.e. by = b, + bs.

1 =2 =1y b;]
16. -4 5 2|b,
—4 7 4| by

1 -2 -1 b,
[0 —3 —2| 4b, + b,
4by + bs |
1 -2 -1 b,
0
0
1
0
0

—1 0| 4b, + by
-3 —2| 4b, +b, |
-2 -1 by
1 0|—4b, —bs
—3 —2| 4b, + b, |
1 -2 -1 by
0 1 0 —4b, — by
0 0 —2| —8b,+b,—3b; |

<4—— The augmented matrix for the system.

<4—— 4 times the first row was added to the second row

and to the third row.

<4—— The second and third rows were interchanged.

<4— The second row was multiplied by —1.

<4—— 3 times the second row was added to the third row.
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1 -2 -1 b,
0 1 0 —4b, — by
0 0 1 4’b1_%b2 +%b3

—

<«—— The third row was multiplied by —%.

The system is consistent for all values of by, b,,and b;.

1 -1 3 2 | bi T

-2 1 5 1| b,

17. <4——— The augmented matrix for the system.
-3 2 2 —-1] b3

|l 4 -3 1 31,

1 —1 3 2 bi7
0 -1 11 5| 2bi+b,
<4—— 2 times the first row was added to the second row,
0 -1 11 5 3b; + b3 3 times the first row was added to the third row, and
0 1 —-11 -5!—4b, +b,] —4 times the first row was added to the fourth row.
1 —1 3 2 bi7
<«— The second row was multiplied by —1.
0 -1 11 5| 3by+b3
- O 1 —11 —5 _4‘b1 + b4_
1 -1 3 2 bi7
0 1 -11 -5 —2by — by The second row was added to the third row and
0 0 0 0 b, — by + by —1 times the second row was added to the fourth row.
l O 0 0 O _Zbl + b2 + b4_

The system is consistent for all values of by, b, , b3, and b, that satisfy the equations
bl_b2+b3 = Oand_2b1+b2+b4= 0.

These equations form a linear system in the variables b,, b, , b3, and b, whose augmented matrix
[1—1100 1 0 -1 -1 0
-2 1 01 0 01 -2 -1 0
is consistentif b; = b; + b, and b, = 2b3 + b,.

] has the reduced row echelon form [ ] Therefore the system

18. (a) Theequation Ax = x can be rewritten as Ax = Ix, which yields Ax — Ix = 0 and
(A-Dx=0.

This is a matrix form of a homogeneous linear system - to solve it, we reduce its augmented
matrix to a row echelon form.

1 1 2
2 1 =2

31 0

0
0 ] <4—— The augmented matrix for the homogeneous system
0 (A-Dx=0.
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[1 1

0o -1 - <4——— —2 times the first row was added to the second row
0 -2 - and —3 times the first row was added to the third row.
[1 1

0 1 <4——— The second row was multiplied by —1.

0 -2 -—

<4—— 2 times the second row was added to the third row.

<«— The third row was multiplied by é

ROoON OO0ON OOODN OO
S OO OO0 OO OO o

cCoRrR oo R
oOR R OR R

Using back-substitution, we obtain the unique solution: x; = x, = x3 = 0.

(b) Aswas done in part (a), the equation Ax = 4x can be rewritten as (A — 4I)x = 0. We solve the
latter system by Gauss-Jordan elimination

[—2 1 2107
2 =2 =210 <4—— The augmented matrix for the homogeneous system
| 3 1 -310J (A—4Dhx=0.
[ 2 —2 —=2]0]
-2 1 210 <4——— The first and second rows were interchanged.
| 3 1 =310
1 —1 —-1]0]7
-2 1 210 <4—— The first row was multiplied by %
| 3 1 =310
1 —1 —-1]0]7
0 -1 0]0 <4+——— 2 times the first row was added to the second row and
K] 4 0101 —3 times the first row was added to the third row.
(1 —1 —-1]0]
0 1 0fo <4——— The second row was multiplied by —1.
10 4 010
1 0 —1]0]7
0 1 0]0 <4—— —4 times the second row was added to the third row
0 O 010 and the second row was added to the first row.

If we assign x3 an arbitrary value t, the general solution is given by the formulas

xy=t,x, =0, and x3 =t.

1 -1 177'2 -1 5 7 8 1 -1 17!
19. X =|2 3 0] [4 0 -3 0 1]. Let us find !2 3 0]
0 2 -1 3 5 -7 2 1 0 2 -1
1 -1 111 0 O
[2 3 0f{0 1 0] <4——— Theidentity matrix was adjoined to the matrix.
0 2 —-110 0 1
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1 -1 1] 1 0 07
0 5 -21-2 1 0 <4——— -2 times the first row was added to the second row.
0 2 =11 0 0 1.
1 -1 11 1 O 07
0 1 0|—2 1 -2 <4+——— —2 times the third row was added to the second row.
0 2 =11 0 0 1.
1 -1 11 1 0 07
0 1 0]-2 1 -2 <4——— -2 timesthe second row was added to the third row.
0 0o -1l 4 -2 51
1 -1 1] 1 0 07
0 1 0({-2 1 -2 <4——— The third row was multiplied by —1.
0 0 11—4 2 -5]
1 -1 0] 5 -2 57
0 1 0]-2 1 -2 <4——— -1 times the third row was added to the first row.
0 0 11-4 2 =5
1 0 0] 3 -1 37
01 0]-2 1 -2 <4——— The second row was added to the first row.
0 0 11—-4 2 =51
1 -1 17t 3 -1 3
Using |2 3 of =1[-2 1 —2| we obtain
0 2 -1 —4 2 =5
3 -1 3112 -1 5 7 8 11 12 -3 27 26
X=1|-2 1 =214 0 -3 0 1|=| -6 -8 1 -18 -17
—4 2 5113 5 -7 2 1 —-15 =21 9 —-38 =35
-2 0 117'4 3 2 1 -2 0 17t
X=]10 -1 -1 6 7 8 9| Letusfind|] 0 -1 -—-1| :
1 1 —4] 1 3 7 9 1 1 -4
-2 0 111 0 O]
0 -1 —-1]0 1 O <4——— Theidentity matrix was adjoined to the matrix.
| 1 1 —410 0 11
[ 1 1 —4]10 0 17
0 -1 —-1]10 1 O <4——— Thefirst and third rows were interchanged.
-2 0 1117 0 OJ
[1 1 =410 0 17
0 -1 —-110 1 O <4+—— 2 times the first row was added to the third row.
K] 2 =711 0 21
1 1 —4|0 0 17
0 1 110 -1 O <4——— The second row was multiplied by —1.
0 2 —-711 0 21
1 1 —4]0 0 17
0 1 110 -1 O <4——— —2 timesthe second row was added to the third row.
0 0 —-9Il1 2 2

89
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[1 1 -4 0 0o 1]
0 1 11 0 -1 0 <«——— The third row was multiplied by —%.
00 1f[-2 -2 _2
9 9 9
_4 _8 1
1 1 0 5 5 5
1 7 2
01 0 5 5 3 <4——— —1 times the third row was added to the second row and
00 1 1 2 2 4 times the third row was added to the first row.
9 9 9
_5 _1 17
1 0 O 5 5 5
1 7 2
0 1 0 5 "5 3 <4——— —1 timesthe second row was added to the first row.
00 1/]-% -2 _2
9 9 9 -

_5 1 1
-2 0 1171 [ 9 9 9]
. 1 7 2 .
Using| 0 -1 —1] =| 5 5 glweobtaln
1 1 —4 l_l 2 _EJ
9 9 9
5 1 17 3 25 25 237
9 9 9 9 9 9
4 3 2 1
1 7 2 40 40 44
X=| = —= -6 7 8 9|=1-4 —— —— ——
9 9 91 3 7 9 9 9 9
1 2 2 ) 23 32 37
9 9 9- 9 9 9 -

True-False Exercises

(a) True.By Theorem 1.6.1, if a system of linear equation has more than one solution then it must have
infinitely many.

(b) True.If A is a square matrix such that Ax = b has a unique solution then the reduced row echelon
form of A must be I. Consequently, AX = ¢ must have a unique solution as well.

() True. Since B is a square matrix then by Theorem 1.6.3(b) AB = I,, implies B = A~ 1.
Therefore, BA = A™1A = I,.

(d) True. Since A and B are row equivalent matrices, it must be possible to perform a sequence of
elementary row operations on A resulting in B. Let E be the product of the corresponding elementary
matrices, i.e., EA = B. Note that E must be an invertible matrix thus A = E~1B.

Any solution of Ax = 0 is also a solution of Bx = 0 since Bx = EAx = EQ = 0.
Likewise, any solution of Bx = 0 is also a solution of Ax = 0 since Ax = E-Bx=E"10=0.

(e) True.If (S71AS)x = b then SS™1ASx = A(Sx) = Sb. Consequently, y = Sx is a solution of Ay = Sb.

(f) True. Ax = 4x is equivalent to AX = 41,X, which can be rewritten as (A — 4I,,)x = 0. By Theorem
1.6.4, this homogeneous system has a unique solution (the trivial solution) if and only if its coefficient
matrix A — 41, is invertible.
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(g) True.If AB were invertible, then by Theorem 1.6.5 both 4 and B would be invertible.

1.7 Diagonal, Triangular, and Symmetric Matrices

1. (a) The matrixis upper triangular. It is invertible (its diagonal entries are both nonzero).
(b) The matrix is lower triangular. It is not invertible (its diagonal entries are zero).

(c) Thisis a diagonal matrix, therefore it is also both upper and lower triangular. It is invertible (its
diagonal entries are all nonzero).

(d) The matrix is upper triangular. It is not invertible (its diagonal entries include a zero).
2. (a) The matrix islower triangular. It is invertible (its diagonal entries are both nonzero).
(b) The matrix is upper triangular. It is not invertible (its diagonal entries are zero).

(c) Thisis a diagonal matrix, therefore it is also both upper and lower triangular. It is invertible (its
diagonal entries are all nonzero).

(d) The matrix is lower triangular. It is not invertible (its diagonal entries include a zero).

3 0 0] 2 1 3@ 3 6 3
3. o -1 o] [—4 1] (-D(=4) (D) =[4 —1]
o0 o 21l 2 5 (2)(2) (2)(5) 4 10

—4 0 0
1 2 =5 MED @@ 5@ _1-4 6 -10
3 o][g g g]_[(—3)(—4) -1D(3) (0)(2)]_[12 -3 0]
5 0 0][-3 2 0 4 —4 G)(=3) G@ GOy G@W G
5 0 2 o” 1 =5 3 0 3]= @A) @5 @3 @0 @3)
0 0 =3ll-6 2 2 2 21 [(-3)(-6) (-3)2) (-3)2) (-3)(2) (3)(2)
-15 10 0 20 -20
—[ 2 =10 6 0 6]
18 -6 —6 —6 —6
2 0 0] 4 -1 3][-3 0 0 Q@3 @EDG) OGO
6. [o -1 o” 1 2 0” 0 5 0]= EDME3) EDH@EG) D))
0 0 4ll-5 1 =2/l 0 0o 21 [WE5HE3) @GOODOG) @DEDQE)
—24 —-10 12
=[ 3 —10 o]
60 20 —16

7. A2=[102 (—%)2]=[(1> J A'2=[1(;2 (—3)-212[‘1) g] A_kz[lak (—g)"‘]:[‘l’ %]
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10.

11.

12.

13.
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(-6)2 0 0 36 0 0 (—6)72
T L
0 0 52 0 0 25 0
1
-6k 0 0 =5z o]
Ak= 0o 3k of=[0 5 0
0 0 57k 0 0 slk
2 -2
O 0 ol poa [0
A=lo () o|=|0 5 o 4F=] o0
1
o o G)ZJ 00 | o
(™ o o ]
I 2) k I 2k 0 0
o=l @ o <o s o
Nk 0 4k
Lo o ()]
[(=2)* o0 0 0] 4 0 00
2| 0 =»* 0o of|_|0o 16 0 0
l 0 0 (=3)? oJ 0o 0o 9 of
0 0 o 221 lo 0o o0 4
2 0 0 0
(=2)7% 0 0 0 o
A_Z 0 (_4)—2 0 0 O 1_6 O O
0 0 (=372 0 00 ;0
-2
0 0 V) o 0 0 4
1
-0
2% 0 o o7 [P |
Ak = [ 0 (_4‘)_k 0 0 ] — 0 (—4)k
[ 0 0 (=3)k OJ 0 0
0 0 0 27k
0 0
[(1)(2)(0) 0 0 0 0 0
0 0)(5)(2) 0 =lo o 0]
0 0 @3)O)@W| lo o o
[(—1D(3)(5) 0 O | 1-15 o o
0 (2)(5)(-2) 0 =[ 0 -20 0
0 0 @ (3)] 0 0 84
13 0 1_1 0
[ 0 (—1)39]_[0 —1]

o1 [

ol=10

i)
0o |

4

0

[e=>2No)

0
16
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15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.
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11000 0 ] _ [1 0

0 (_1)1000 0 1

fau  av [ra Sb  tc]
(@ |bw bx (b) |ua vb wc
¢y cz] lxa yb zc]
[ua vb] rar as  at]
(@) |wa xb (b) [bu bv bw
lya zb| [cx ¢y cz]

[1 3 7 2

[ 2 -1 3 1 -8 -3

@ [5 5 ® 17 & o 9

2 -3 9 0

1 7 =3 2

0 3 7 4 5 —7
(a) [3 0 ®) |3 5 1 _6
| 2 -7 -6 3

From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are
all nonzero. Since this upper triangular matrix has a 0 on its diagonal, it is not invertible.

From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are
all nonzero. Since this upper triangular matrix has all three diagonal entries nonzero, it is invertible.

From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are
all nonzero. Since this lower triangular matrix has all four diagonal entries nonzero, it is invertible.

From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are
all nonzero. Since this lower triangular matrix has a 0 on its diagonal, it is not invertible.

(-1 x X

AB = 0 O] X . The diagonal entries of AB are: —3,5,—6.
0 0 (1))

(D) 0 0

AB = X (0)(5) 0 . The diagonal entries of AB are: 24,0, 42.
x X (7)(6)

The matrix is symmetric if and only if a + 5 = —3. In order for 4 to be symmetric, we must have
a=-8.

The matrix is symmetric if and only if the following equations must be satisfied

a — 2b + 2¢ = 3
2a + b + c = 0
a + c = -2

We solve this system by Gauss-Jordan elimination

1 -2 2| 3
[2 1 1 0 ] <4—— The augmented matrix for the system.
1 0 11-2
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27.

28.

29,

30.

31.

32.
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1 0 1]-2]
2 1 1| 0 <4—— The first and third rows were interchanged.
1 -2 21 31
1 0 1]1-2
0 1 —-1| 4 <4—— —2 times the first row was added to the second row
0 -2 11 51 and —1 times the first row was added to the third.
1 0 1]-2]
01 -1 4 <—— 2 times the second row was added to the third row.
0 0 —1113]
1 0 1] -2
0 1 -1 4 <4——— The third row was multiplied by —1.
0 0 11-13
1 0 0] 11]
01 0] -9 <4——— The third row was added to the second row
0 0 11-131 and —1 times the third row was added to the first.
In order for A to be symmetric, we must have a =11, b = -9, and ¢ = —13.
From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are

all nonzero. Therefore, the given upper triangular matrix is invertible for any real number x such
that x # 1, x # =2, and x # 4.

From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are
all nonzero. Therefore, the given lower triangular matrix is invertible for any real number x such
that x;tl, xqtl, and x;t—l.

2 3 4
By Theorem 1.7.1, A~ is also an upper triangular or lower triangular invertible matrix. Its diagonal

entries must all be nonzero - they are reciprocals of the corresponding diagonal entries of the matrix
A.

By Theorem 1.4.8(e), (AB)T = BT AT. Therefore we have:

(BTB)T = BT(B™T = BTB,
(BB™T = (BT)TBT = BBT, and
(BTAB)T = (BT(AB))T = (AB)T(B™)T = BTATB = BT AB since A is symmetric.

1 0 0]
A=l0 -1 0
0O 0 -1l
>0 0 -2 00
Forexample A=y 1 (]| (thereareseven other possible answers, e.g,| o 1 ,
2 2
0 0 1 0 0

S O wik
|
o
(¢}
=
(@]
()



33.

34.

35.
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DR+ @O +G)0) DEB+ ()2 +G)O0) (=1D(0) +(2)(1) + (B)(3)
AB =1 (0)@2)+ MO +B)0) O+ M) +(3)(0)  (0)(0) + (1) +(3)(3)
0)(2) +(0)(0) + (=H(0) (0)(=8) +(0)(2) + (=H)(0) (0)(0) + (D)D) + (=H(3)

-2 12 17
= [ 0 2 10] . Since this is an upper triangular matrix, we have verified Theorem 1.7.1(b).
0 0 -—12
(@) Theorem 1.4.8(e) states that (AB)T = BT AT (if the multiplication can be performed). Therefore,
(AZ)T — (AA)T ATAT — (AT)Z A:is AZ
symmetric

which shows that A2 is symmetric.

(b) (24%2-34+DT = 24T 34T +1T = 2(AT)?2 —=3AT +I1T = 242-3A4+1
Th. Th. Aand]I
1.4.8 1.4.8 are
(b-d) (e) symmetric

which shows that 242 — 34 + [ is symmetric.

3 1
(@) Al= —(2)(3) vy [1 2] = i g is symmetric, therefore we verified Theorem 1.7.4.
5 5
1 -2 311 0 0]
(b) -2 1 =710 1 0 <4—— The identity matrix was adjoined to the matrix A.
3 =7 410 0 1.
(1 -2 3] 1 0 0]
0 -3 -1 2 1 0 <4—— 2 times the first row was added to the second row and
0 -1 -51-3 0 11 —3 times the first row was added to the third row.
(1 -2 3] 1 0 0]
0 -1 -5|-3 0 1 <4—— The second and third rows were interchanged.
|0 -3 —-11 2 1 Ol
(1 -2 311 O 07
0 1 513 0 -1 <«—— The second row was multiplied by —1.
0 -3 —-112 1 0.
1 -2 311 0 07
0 1 5 3 0 -1 <4—— 3 times the second row was added to the third row.
0 0 14111 1 -3
[1 -2 3|1 0 0]
0 1 5|3 0 -1 <4——— The third row was multiplied by i.
11 1 3
| 0 0 1 2 12 12l
[ _19 3 9,
| 1 -2 3 T 14 14 14
13 5 1 . .
[0 1 0 T T Y <4—— —5 times the third row was added to the second row
[0 0 1 11 1 3 and —3 times the third row was added to the first row.
14 14 14
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1 0 3|72 —72 12

45 13 11
[ 14 14 14

13 5 1 l
01 0]l—— —— — <4——— 2 times the second row was added to the first row.

11 1 3

[001 oL 3

14 14 14J
14 14 14

45 13 11
14 14 14

Since A™! = [— = 1—14] is symmetric, we have verified Theorem 1.7.4
l 11 1 3 J

14 14 14

0

0

c
0 O0]fa 0 O a 0 0 1 0 0
bO][ObO]—3[0bO]—4[010]
0 cllO O

a
A2 —34—-41=|0
0 c 0 0 ¢ 0 0 1
[a> 0 0 3a¢ 0 O 4 0 0
=10 b? 0]—[0 3b 0‘—[0 4 0‘
[0 0 2 0 0 3c 0 0 4
[a? —3a — 4 0 0
= 0 b*—-3b—4 0 ‘
I 0 0 c?—3c—4
[(a —4)(a+ 1) 0 0
= 0 b-4Hb+1) 0
0 0 (c=4)(c+1)

This is a zero matrix whenever the value of a, b, and c is either 4 or —1. We conclude that the
following are all 3 x 3 diagonal matrices that satisfy the equation:

pa ol s bl
R IR

37. (@) a;=j2+i*=i*+j?=aq; forall iand; therefore A is symmetric.
(b) aj; = j?—i? does not generally equal a;; = i?> — j* for i # j therefore A is not symmetric
(unlessn = 1).
() a;=2j+2i=2i+2j=aq; forall iandj therefore A is symmetric.
(d) a;; = 2j%+ 2i® does not generally equal a;; = 2i* + 2j3 for i # j therefore 4 is not
symmetric (unlessn = 1).
38. Ifa;; = f(i,)) then A is symmetric if and only if £ (i,j) = f(j, i) for all values of i andj.

a b

39. For ageneral upper triangular 2 X 2 matrix 4 = [O c] we have

#=[o Mo 5



40. (a) Step1l.Solve [—2 30

41.

42,
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_ [az ab + bc] [a b] _ [a3 a’b + (ab + bc)c] _ [a3 (a® +ac +c?)b
0 c? 0 ¢ 0 3 0 3

1 30

0 -8

The first and the third equations yield a = 1,c = —2.

Substituting these into the second equation leads to (1 — 2 + 4)b = 30, i.e,, b = 10.

1 307 . N
0 —_8 1SA—[0

Setting A3 = [ ] we obtain the equations a® = 1, (a? + ac + c?)b = 30, c3 = -8.

We conclude that the only upper triangular matrix A such that 43 = [ 10]

1
=|-2
0
The second equation (—2)(1) + 3y, = —2 yields y, = 0.
The third equation (2)(1) + (4)(0) + 1y; = 0 yields y; = —2.

2 -1 311" 1
X2l=1 0
X3 -2

Step 2. Solve [0 1 2
The third equation 4x; = —2 yields x3 = —%.

1 0 01[)1
V2
V3

2 41
The first equationis y; = 1.

using back-substitution:

0 0 4

The second equation 1x, + (2) (— %) = 0 yields x, = 1.

The first equation 2x; + (=1)(1) + (3) (— %) =1 yields x; = %.

2 0 01 4
(b) Step1.Solve | 4 1 0||Y2|=|-5
-3 =2 313 2

The first equation 2y, = 4 yields y; = 2.
The second equation (4)(2) + 1y, = =5 yields y, = —13.
The third equation (—3)(2) + (—2)(—13) + 3y3; = 2 yields y; = —6.

3 =5 21™
Step 2. Solve |0 4 1||*2

0 0 2itxs
The third equation 2x3; = —6 yields x3 = —3.

2
= [—13] using back-substitution:
-6

The second equation 4x, + (1)(—3) = —13 yields x, = _g_
The first equation 3x; + (—=5) (— %) + (2)(=3) = 2 yields x; = _g_

0 0 4 0 0 -8
(a) [0 0 1] (b) [0 0 —4
-4 -1 0 8 4 0
The condition AT = —A is equivalent to the linear system

2a — 3b + 2

3a — 5b + b5c = 3

5a¢ — 8 + 6c = 5

d = 0

—2r

97
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2 -3 1
The augmented matrix =5 5
5 -8 6
0 0 0

If we assign ¢ the arbitrary value ¢, the general solution is given by the formulas

a=14+10t, b=7t,c=t, d=0.

S O O

1

2 1
z has the reduced row echelon form 8

0 0

SO r O

S = OO

S O O

No.If AB = BA, AT = —A,and BT = —B then (AB)T = BTAT = (—B)(—A) = BA = AB which does
not generally equal —AB. (The product of skew-symmetric matrices that commute is symmetric.)

T
%(A + AT) is symmetric since (% (A+ AT)) = %AT + % ANt = %(A + AT) and

T
%(A — AT) is skew-symmetric since (% (4 — AT)) = %AT - % AanT = %(AT —A) =-— G (4 - AT)>

therefore the result follows from the identity %(A + A7) + % (A-AT)=A.

(@ @™’
— (AT)1 —
= (- —
=—-A"1 —
(b) AN’
=A —
= AT —
A4+B)T
= AT + BT D E—
=—A-B «—
=—(A+B) «—
(A-B)"
— AT _ BT —
=—-A-(-B) D

= —(A-B) —

Theorem 1.4.9(d)
The assumption: A is skew-symmetric

Theorem 1.4.7(c)

Theorem 1.4.8(a)

The assumption: A is skew-symmetric

Theorem 1.4.8(b)
The assumption: A and B are skew-symmetric

Theorem 1.4.1(h)

Theorem 1.4.8(c)
The assumption: A and B are skew-symmetric

Theorem 1.4.1(i)
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(kA"

= kAT <4—  Theorem 1.4.8(d)

= k(-4) 4 The assumption: 4 is skew-symmetric
= —kA <4— Theorem 1.4.1(l)

47. AT = (ATA)T = AT(AT)T = ATA = A therefore A is symmetric; thus we have 42 = AA = ATA = A.

True-False Exercises
(@) True. Every diagonal matrix is symmetric: its transpose equals to the original matrix.

(b) False. The transpose of an upper triangular matrix is a lower triangular matrix.

11 1 01_12 17. . .
0 1]+ " 1]_ is not a diagonal matrix.

(c 1 2

N/

False.E.g., [

(d) True. Mirror images of entries across the main diagonal must be equal - see the margin note next to
Example 4.

(e) True. All entries below the main diagonal must be zero.

(f) False. By Theorem 1.7.1(d), the inverse of an invertible lower triangular matrix is a lower triangular
matrix.

(g) False. A diagonal matrix is invertible if and only if all or its diagonal entries are nonzero (positive or
negative).

(h) True. The entries above the main diagonal are zero.

(i) True.If Ais upper triangular then A7 is lower triangular. However, if 4 is also symmetric then it

follows that AT = A must be both upper triangular and lower triangular. This requires A to be a
diagonal matrix.

(j) False. For instance, neither A = 8 (1) nor B = [(1) 8 is symmetric even though 4 + B = (1) (1) is.
. . 710 1 _[0 01. .
(k) False. For instance, neither A = [_1 0 nor B = [1 0] is upper triangular even though
_ [0 17.
A+B= [0 ol Is-
(1) False. Forinstance, A = [(1) 8 is not symmetric even though A? = [8 8 is.

(m) True. By Theorem 1.4.8(d), (kA)T = kAT. Since kA is symmetric, we also have (kA)T = kA. For
nonzero k the equality of the right hand sides kAT = kA implies AT = A.
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1.8 Matrix Transformations

(a)

(b)

(9

(d)

(a)

(b)

(9

(d

(a)

(b)

(a)

(b)

()

(b)

(a)

(b)

T,(x) = Ax maps any vector X in R? into a vector w = Ax in R3.
The domain of T, is R?; the codomain is R3.

T,(x) = Ax maps any vector X in R3 into a vector w = Ax in R2.
The domain of T, is R3; the codomain is R?.

T,(x) = Ax maps any vector X in R3 into a vector w = Ax in R3.
The domain of T, is R3; the codomain is R3.

T,(x) = Ax maps any vector X in R® into a vector w = Axin R! = R.
The domain of T, is R®; the codomain is R.

T,(x) = AX maps any vector x in R® into a vector w = Ax in R*.
The domain of T, is R5; the codomain is R*.

T,(x) = Ax maps any vector X in R* into a vector w = Ax in R®.
The domain of T is R*; the codomain is R®.

T,(x) = Ax maps any vector X in R* into a vector w = Ax in R*.
The domain of T is R*; the codomain is R*.

T,(x) = AX maps any vector X in R! = R into a vector w = Ax in R3.
The domain of T, is R; the codomain is R3.

The transformation maps any vector x in R? into a vector w in R?.
Its domain is R?; the codomain is R?.

The transformation maps any vector x in R? into a vector w in R3.
Its domain is R?; the codomain is R3.

The transformation maps any vector x in R3 into a vector w in R3.
Its domain is R3; the codomain is R3.

The transformation maps any vector x in R3 into a vector w in R?.
Its domain is R3; the codomain is R?.

The transformation maps any vector x in R3 into a vector in R2.
Its domain is R3; the codomain is R?.

The transformation maps any vector x in R? into a vector in R3.
Its domain is R?; the codomain is R3.

The transformation maps any vector x in R? into a vector in R?.
Its domain is R?; the codomain is R?.

The transformation maps any vector x in R3 into a vector in R3.
Its domain is R3; the codomain is R3.



10.

11.

12.

13.

(a)

(b)

(a)

(b)

1.8 Matrix Transformations

The transformation maps any vector x in R? into a vector in R?.

Its domain is R?; the codomain is R?.

The transformation maps any vector x in R3 into a vector in R?.

Its domain is R3; the codomain is R?.

The transformation maps any vector x in R* into a vector in R?.

Its domain is R*; the codomain is R?.

The transformation maps any vector x in R3 into a vector in R3.

Its domain is R3; the codomain is R3.

101

The transformation maps any vector x in R? into a vector in R3. Its domain is R?; the codomain is R3.

The transformation maps any vector X in R3 into a vector in R*. Its domain is R3; the codomain is R*.

(a)

(b)

(a)

(b)

()

X
The given equations can be expressed in matrix form as _Wl] = [2 3 1] x:
%) 3 5 -1 X
3
therefore the standard matrix for this transformation is g _g _ﬂ
(W1 7 2 —8][*1
The given equations can be expressed in matrix form as |[Wz| =0 -1 5]]%2
| W3 4 7 —=111%3
[7 2 -8
therefore the standard matrix for this transformationis [0 —1 5|
4 7 -1
w1 -1 17
The given equations can be expressed in matrix form as [W2|=| 3 -2 [xl]
| W3 5 —7]°7?
[—1 1
therefore the standard matrix for this transformationis| 3 -2]|.
5 -7
wy 1 0 0 0][*
. . . . W2l |1 1 0 O0f]xX2
The given equations can be expressed in matrix form as wil =11 1 1 ollxs
| Wy 1 1 1 110X
[1 0 0 O
. . .. .11 1 0 0
therefore the standard matrix for this transformation is 111 ol
1 1 1 1
X2 0 1 0 1
_ —X1 -1 0] r*a7. .. -1 0
T(x1,x5) = X +3x5,=| 1 3 [Xz]' the standard matrix is 1 3
X1 — X3 1 -1 1 -1
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7x1+ 2x5 — X3 + X4 7 2 =1 17|,
(b) T(xq,x2,x3,%4) = X2 + X3 :[ 0 1 1 0] x; ;
—Xq -1 0 0O X,
7 2 -1 1
the standard matrix is [ 0 1 1 0]
-1 0 0O
[0'| [0 0 O] |'0 0 0]
[0] [0 O O]*1 [0 0 O
(€) T(xq,x5x3)= |0| = |0 0 0| X3 |; the standard matrix is |0 0 0|
0 0 0 0flxs 0 0 O
loJ lo 0 ()J |-0 0 OJ
[ Y« 7 (0 0 01 X 0 0 01
| %1 | [1 0 O Ol X [1 0 0 0]
(d) T(xq,x5, %3, %4) =| X3 |= 0 0 1 0 xz ; the standard matrixis |0 0 1 0
© | o1 o ol o 1 0 o
by —xsl L1 o -1 ol i o -1 o
_[2x, — 2 —1 .2 -1
@ T(xq,xy)= [x +x, ] [1 1 ] the standard matrix is [1 1]
_[*11_11 0711*11. ... M1 0
(b) T(xq,xy) = [xz_ = 1o 1] [xz],the standard matrix is [0 1]
(X1 +2x, +x37 1 2 1 1 21
() T(xq,x3,x3) =] x1+5x; =|1 5 0]]|Xz]; the standard matrixis {1 5 0
X3 0 0 1 0 0 1
4x4 4 0 01" 4 0 O
(d) T(xq,x5,x3)= 7x2] = [0 7 0] [le; the standard matrix is [0 7 0]
| —8x3 0 0 -8
w1
The given equations can be expressed in matrix form as [W ] [ ] [ ] therefore the
w3
3 5 -1
standard matrix for this operatoris [4 —1 1]
3 2 -1

By directly substituting (—1,2,4) for (x4, x,, x3) into the given equation we obtain
w; =—-3)MD)+G)2) -1 =3
wy =—(4)(1) - (D@ + (@) =-
wz =-3)(1)+(2)(2) - (@) = -

Wy 3 5 —11[-11 [-G@W+G)(@) - 1@ 3
By matrix multiplication, [Wz] = [4 -1 1 [ 2] =|-@WO-DO@+ DW= [— ]
W3 3 2 -1l 4 [-BG)M+ @)@ - 1)@

therefore the

o

The given equations can be expressed in matrix form as s ) 3

standard matrix for this transformation is [i _z _;’ :; )

By directly substituting (1, —1,2,4) for (x4, X3, X3, x,) into the given equation we obtain



17.

18.

19.

20.

21.
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wi=(2) D) -B)M)-G)2) -1 =-15
we, =DM+ G)D+(2)(2) - 3)(4) = -2

By matrix multiplication,

1]
[W1] 3 -5 —1 -1 [(2)(1) -3)1)-G)(2) - (1)(4)] _ [—15
w2 1 -5 2 21 L@+ G+ @)(2) - )@)]
4]
@) T(xy,xy) = [ xl N xz _é ﬂ [2], the standard matrix is [_(1) 1].
-1 - [OO+@O@® 5 PN _
T(x) = [ 0 1][ 4] = =0 + (1)(4)] = [4] matches T(—1,4) = (1 + 4,4) = (5,4).
2x1—x2+x3 —1 1 2 -1 1
(b) T(x1,x3,x3) = [ Xy + X3 ] [ ] the standard matrixis |0 1 1].
0 0 0
—1 1 (2)(2) - (1)(1) - (DA 0
T(x) = [ ] O@+ MM -MA)|= [— ]
@)+ (0)(1) - (™)
matches T(2,1, 3) =(4l-1-31-3,0)=(0,-2,0).
(@) Txy) = [Zxxll n x2 ] [2 _1 ; the standard matrix is [i _ﬂ
- (2)(2) - (1)(2) _[-6
T(x) = [ (@) + (1)(2)] = [ O] matches
T(— 2,2)—( 4 -2, 2+2)—(—60).
X1 1 0 0
(b) T(xq,x3,x3) = [xz = [ —1] lxz the standard matrix is [0 1 —1].
X 0 1 0
1 0 O]t (1)(1) +(0)(0) + (0)(5)
Tx)=[0 1 —1] [0] = [(0)(@D) + (1)) — (D)(G)| = [—5] matches T(1,0,5) = (1,—5,0).
0 1 0l [(0)(1) + (1)(0) + (0)(5)
(1 2 3 -1
@ Teo=ax=; o[ 5]=["]
-1
—1 2 0 3
(b) Ta()=dAx=| 5 5][ ;] =[43]
—2 1 41T1X1 —2x1 + x5 + 4x3
(@ T,x)=A4x=| 3 5 7] [le = [3xy + 5x, + 7x3
6 0 —-111% 6x1 — X3
-1 1 —X1t X3
() Ta()=4dx=| 2 4] (o] = |20+ 42
| 7 gl™? 7x1 + 8x,
(@) If u=(uq,uy) and v = (vy,v,) then

Tu+v) =T, +vq,u, +v,)
= (2(ug + v1) + (uz + 1), (ug + v1) — (uy + v3))
= (2u1 + uZ,ul - uZ) + (21]1 + vz,vl - Uz)

103
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24.

25.

(b)

(a)

(b)

(a)

(b)

(a)

(b)
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=T(u) + T(v)
and T(ku) = T(kuy, kuy) = Qkuy + kuy, kuy — kuy) = k(Quq + uy, uy — uy) = kT ().

If u= (uy,u,,uz) and v = (vq,v,,v3) then
Ta+v) =Ty +vq,uUp +vy,uz + v3)
= (uy + vy, us +v3,ug + v +u, +vy)
= (uy, Uz, Uy +up) + (1, v3,v; + v3)
=T() + T(v)
and T(ku) = T(kuy, kuy, kus) = (kuq, kus, kuq + kuy) = k(uq, uz, uq + uy) = kT(u).

If u= (uy,u,,uz) and v = (vq,v,,v3) then

Ta+v) =Ty +vq,uUp + vy, uz + v3)

= +vi+u,+vyuy vy +uz v, ug +vg)

= (uq + Uy, uy +uz,uy) + (v + vy, v, + v3,11)

=T(u) +T(v)
and T(ku) = T(kuy, kuy, kus) = (kuq + kuy, kuy, + kuz, kuy) = k(uy + uy, uy +us,uyp) =
kT (u).

If u=(u;,u,) and v = (v,,v,) then
T(u+v) =T(u +vq,uy +vy)
= (uy + vy, uy; +vq)
= (uz,uy) + (v2,v1)
=T() +T(v)
and T(ku) = T(kuy, kuy) = (kuy, kuy) = k(uy,uq) = kT (u).

The homogeneity property fails to hold since T(kx, ky) = ((kx)?, ky) = (k?x2, ky) does not

generally equal kT (x,y) = k(x?,y) = (kx?,ky). (It can be shown that the additivity property
fails to hold as well.)

The homogeneity property fails to hold since T (kx, ky, kz) = (kx, ky, kxkz) = (kx, ky, k?xz)
does not generally equal kT (x,y,z) = k(x,y,xz) = (kx, ky, kxz). (It can be shown that the
additivity property fails to hold as well.)

The homogeneity property fails to hold since T (kx, ky) = (kx, ky + 1) does not generally equal
kT(x,y) = k(x,y + 1) = (kx,ky + k). (It can be shown that the additivity property fails to hold
as well.)

The homogeneity property fails to hold since T (kxq, kx,, kx3) = (kxl, kx,, ,/kx3) does not
generally equal kT (xq,x,,%x3) = k(xl,xz, \/x_g) = (kxl, kx,, k\/x_g) (It can be shown that the
additivity property fails to hold as well.)

The homogeneity property fails to hold since for b # 0, f(kx) = m(kx) + b does not generally equal
kf(x) = k(mx + b) = kmx + kb. (It can be shown that the additivity property fails to hold as well.)
On the other hand, both properties hold forb = 0: f(x +y) = m(x +y) =mx+my = f(x) + f(y)
and f (kx) = m(kx) = k(mx) = kf (x).

Consequently, f is not a matrix transformation on R unless b = 0
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Both properties of Theorem 1.8.2 hold for T'(x, y) = (0,0):
T(Cuy) + (,y")) =T(x+x",y +y) = (0,0) = (0,0) + (0,0) =T(x,y) + T(x',y")
T(k(x,y)) = T(kx, ky) = (0,0) = k(0,0) = kT(x,y)

On the other hand, neither property holds in general for T(x,y) = (1,1), e.g,,
T((x, y) + (x’,y’)) =Tx+x,y+y'")=(1,1) does not equal
T(x,y)+ T y) =11+ 11) =(22)

By Formula (13), the standard matrix forTisA=[ T(e;) | T(e;) | T(e3)]. Therefore

10 4 (D) + O+ @B)O)] 2
30 —3] and T(x) = Ax = |(3)(2) + (0)(1) — (3)(0) =H.
0 1 -1 (0)2)+ (D)) —(1)(0)] 11

By Formula (13), the standard matrix for TisA=[ T(e;) | T(e;) | T(e3) ]. Therefore

A=

2 -3 1 (2)(3) — (3)(2) + (WD) 1
A=11 -1 0] and T(x) =Ax=|(DB) - D@+ O)(D)| = [ 1].

|3 0 2 ((3)(3) + (0)(2) + (2)(D)] 11
By Formula (13), the standard matrix forTisA =[ T(e;) | T(e;) ]. Therefore
a=[f Slamaran=all] =[]

For instance, T (x,y) = (xy, 0) satisfies the property T(0,0) = (0,0), but the homogeneity property
fails to hold since T(kx, ky) = (kxky, 0) = (k?xy, 0) does not generally equal kT (x,y) = k(xy,0) =

(kxy, 0).
-1 3 0
(@) Tuley) = [ 2|, Ty(ey) = |1), Ty(e3) = [ 2].
4 5 -3

(b) Since T, is a matrix transformation,

-1
2
4

Tp(e; + e, +e3) =Ty(e) +Ty(e;y) +Ty(e3) = + +

3
1
5

0
2
-3

i
HE

(c) Since T4 is a matrix transformation, T,(7e3) = 7T4(e3) =7

True-False Exercises

()
(b)
()
(d)
(e)
4

False. The domain of T is R3.

False. The codomain of T, is R™.

True. Since the statement requires the given equality to hold for some vector x in R", we can letx = 0.
False. (Refer to Theorem 1.8.3.)

True. The columns of A are T'(e;) = 0.

False. The given equality must hold for every matrix transformation since it follows from the
homogeneity property.
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(g) False. The homogeneity property fails to hold since T(kx) = kx + b does not generally equal
kT(x) = k(x +b) = kx + kb.

1.9 Applications of Linear Systems

1. There are four nodes, which we denote by 4, B, C, and D (see the figure on the left).
We determine the unknown flow rates x4, x5, and x; assuming the counterclockwise direction (if any
of these quantities are found to be negative then the flow direction along the corresponding branch
will be reversed).

Network node Flow In

A x,+50 =
B X1 =
C 50 =
D x3+40 =

This system can be rearranged as follows

_xl + x2 == _50
xl - X3 == 30
- x2 - 10
X3 - 10
By inspection, this system has a unique solution x; = 40, x, = —10, x3 = 10. This yields the flow
rates and directions shown in the figure on the right.
2. (a) There are five nodes - each of them corresponds to an equation.
Network node Flow In Flow Out
top left 200 =  XxX;+x3
top right x3+ 150 = x4+ x5
bottom left x,+25 = Xy
bottom middle x, +x, = x4+ 175
bottom right Xs+Xg = 200

This system can be rearranged as follows



(b)

)
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(b)

(9

(a)
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X1 + x3 = 200
- X3 + x4 + X3 = 150
—X;1 + X3 = 25
Xy + Xy - x4 = 175
xs + x4 = 200
The augmented matrix of the linear system obtained in part (a) has the reduced row echelon
r oo 1 0 -1 150
|0 1 0 1 0 -1 175]|
formlo0 0 1 -1 0 1 50|.Ifweassign x, and x, the arbitrary values s and t,
0 00 01 1 200

0 00 0O0 O 0
respectively, the general solution is given by the formulas

xy=150—-s+t, x, =175—s+t, x3=50+5—1t, x4 =5, x5 =200—1¢t, xg =t

When x, = 50 and x4 = 0, the remaining flow rates become x; = 100, x, = 125, x3 = 100,
and xg = 200. The directions of the flow agree with the arrow orientations in the diagram.

There are four nodes - each of them corresponds to an equation.

Networknode Flow In Flow Out
top left x, +300 = x5+ 400
top right (A) x3+750 = x4+ 250
bottom left x,+100 = x, +400
bottom right (B) x, +200 = x;+ 300
This system can be rearranged as follows
X, — X3 = 100
x3 — x4 = =500
X1 — X = 300
—Xq + x4 = 100

0 1 -1 0 100
0 0 1 -1 -500
1 -1 0 0 300
-1 0 0 1 100

The augmented matrix of the linear system obtained in part (a)

1 0 0 -1 -100
0 1 0 -1 -400 . .

has the reduced row echelon form 00 1 -1 —s00l" If we assign x, the arbitrary value
0 00 O 0

s, the general solution is given by the formulas
x;=-100+s, x, =—400+s, x3=-500+s, x4, =5

In order for all x; values to remain positive, we must have s > 500. Therefore, to keep the traffic
flowing on all roads, the flow from A to B must exceed 500 vehicles per hour.

There are six intersections - each of them corresponds to an equation.
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Intersection Flow In Flow Out
top left 500+300 = x;+x3
top middle X1 +x4, = x,+200
top right x, +100 = x5+ 600
bottom left x3+x, = 400+ 350
bottom middle x; +600 = x;+ x4
bottom right x5 +450 = x;, 4400
We rewrite the system as follows
X1 + x3 = 800
-x; + x — Xy = =200
- X + x5 = =500
X3 + X6 = 750
Xy + X — x; = 600
- X5 + x; = 50

The augmented matrix of the linear system obtained in part (a) has the reduced row echelon

[10000—1050]

01000 0 —1 450

fOrmloo1oo 1 0 750
000 1 0 1 —1 600
0 0 0 1

0 0 -1 -50
l00000000J

. If we assign x4 and x, the arbitrary values s and

t, respectively, the general solution is given by the formulas

x; =50+s, x, =450+ ¢,
x3=750—35, x, =600 —5s+¢,
X5 ==50+¢t xg =5, x; =t

=0

750-s>0
750 —s
o

subject to the restriction that all seven t A <N

values must be nonnegative. Obviously,

we need both s = x4 = 0 and

t = x; = 0, which in turn imply

x1 =2 0 and x, = 0. Additionally

imposing the three inequalities 150

x3=750—52>20, x,=600—s+t > 50

-50+t>0
-50+t=0

0, and x5 = =50+t = 0 resultsin
the set of allowable s and t values
depicted in the grey region on the graph.

\{

600 750 S

Setting x; = 0 in the general solution obtained in part (b) would result in the negative value

s = xg = —50 which is not allowed (the traffic would flow in a wrong way along the street

marked as xg.)

From Kirchhoff's current law at each node, we have I; + I, — I3 = 0. Kirchhoff's voltage law yields

Voltage Rises Voltage Drops

Left Loop (clockwise)

Right Loop (clockwise) 21, + 415

211 = 212 + 6
8
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(An equation corresponding to the outer loop is a combination of these two equations.)
The linear system can be rewritten as

11 + 12 - 13 = 0
211 - 212 = 6
212 + 413 = 8
100 2
5
Its augmented matrix has the reduced row echelon form {0 1 0 —%.
o o 1 &
5

The solutionis I; = 2.6A, I, = —0.4A,and I3 = 2.2A.
Since I, is negative, this current is opposite to the direction shown in the diagram.

From Kirchhoff's current law at each node, we have I; — I, + I3 = 0. Kirchhoff's voltage law yields

Voltage Rises Voltage Drops
Left Inside Loop (clockwise) 41, + 61, = 1
Right Inside Loop (clockwise) 215 = 2 +41

(An equation corresponding to the outer loop is a combination of these two equations.)
The linear system can be rewritten as

L - L + I3 =0
41, + 6], = 1
—41; + 2I; = 2
[1 00 —=
22
Its augmented matrix has the reduced row echelon form [0 1 0 % [

0 0 1 —
o 5 7 6
The solutionis I; =——=A, I, =—A,and I3 =—A.
22 22 11
Since I, is negative, this current is opposite to the direction shown in the diagram.

From Kirchhoff's current law, we have

Current In Currrent Out
Top Left Node I = L+ 1,
Top Right Node I, = I3+ 15
Bottom Left Node I + I = I
Bottom Right Node I3 + I = Ig
Kirchhoff's voltage law yields
Voltage Rises Voltage Drops
Left Loop (clockwise) 10 = 201, + 201,
Middle Loop (clockwise) 201, = 2015
Right Loop (clockwise) 2013+ 10 = 2015

(Equations corresponding to the other loops are combinations of these three equations.)

The linear system can be rewritten as
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L - I - 1
- L 4+ I, -
-, + I
Iy +
—20I, — 201,
20L, — 201,
201, -

Its augmented matrix has the reduced row echelon form

The solutionis I =1, =I5 =1, = 0.5A, I, = I3 = 0A.

0

15 = 0

+ I, = 0

I — I, = 0

= —10

- 0

2015 ~10
0000 0 1
2

(@]
-
o
o
(@]
(@]

0010 0 =
2
00010 =
2
0000 1 1+
2

(=]
(=]
o
o
(=]
o

8.  From Kirchhoff's current law at each node, we have I; — I, — I3 = 0. Kirchhoff's voltage law yields
Voltage Rises Voltage Drops
Top Inside Loop (clockwise) 31, + 41, = 5+4
Bottom Inside Loop (clockwise) 4 + 513 = 3+41,
The corresponding linear system can be rewritten as
11 - 12 - 13 = 0
311 + 412 = 9
- 412 + 513 = -1
100 Z
47
[ts augmented matrix has the reduced row echelon form |0 1 0 g .
001 2
47
The solutionis I; = ZA, I, = ﬂA,and I3 = ZA.
47 47 47
9. We are looking for positive integers X, x5, x3, and x4 such that

x1(C3Hg) + x2(03) = x3(CO3) + x4(H,0)

The number of atoms of carbon, hydrogen, and oxygen on both sides must equal:

Left Side
Carbon 3x1 =
Hydrogen 8x4 =
Oxygen 2%, =

The linear system

Right Side
X3
2%y
2x3 + x4
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3x1 - X3 = 0
8x1 - 2x4 = 0
2x2 - ZX3 - Xg = 0

4
s |

I[100—101
lo 1 0 -2 ol

has the augmented matrix whose reduced row echelon form is
3

0

4
0 01 —= OJ

4
The general solution is x; = it, X, = Zt, X3 = Zt, x4 =t where t is arbitrary. The smallest positive
integer values for the unknowns occur when t = 4, which yields the solution
x; =1, x, =5, x3 =3, x, =4. The balanced equation is

C3Hg + 50, - 3CO, + 4H,0
We are looking for positive integers x;,x,, and x5 such that
x1(CH1206) = x2(CO,) + x3(C;HsOH)

The number of atoms of carbon, hydrogen, and oxygen on both sides must equal:

Left Side Right Side

Carbon 6x4 =  Xp+2x3
Hydrogen 12x4 = 6x3

Oxygen 6x1 =  2x;+x3

The linear system
6x1 - Xy - ZX3 = 0
12x1 - 6X3 = 0
6x1 - 2x2 - X3 = 0
10 -2 0

2
has the augmented matrix whose reduced row echelon formis|g 1 —1 ol

0 0 0 0
The general solution is x; = %t, X, =t, x3 = t where t is arbitrary. The smallest positive integer

values for the unknowns occur when t = 2, which yields the solution x; = 1, x, = 2, x3 = 2. The
balanced equation is
CeH1,06 — 2CO, + 2C,H50H

We are looking for positive integers x4, x,, X3, and x, such that
x1(CH3COF) + x,(H,0) = x3(CH3COOH) + x,(HF)

The number of atoms of carbon, hydrogen, oxygen, and fluorine on both sides must equal:

Left Side Right Side
Carbon 2x1 = 23
Hydrogen 3x;+2x, = 4x;+x,
Oxygen X +x, = 2x3
Fluorine Xq = Xy

The linear system
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2xq - 2x3 0
3x1 + sz - 4X3 — X4 = 0
x1 + xZ - 2.x3 = 0
X1 — X 0
10 0 -1 0
01 0 -1 0
has the augmented matrix whose reduced row echelon form is .
0 1 -1 0

lO 0 0 O OJ
The general solutionis x; =t, x, =t, x3 =t, x4, =t where t is arbitrary. The smallest positive

integer values for the unknowns occur when t = 1, which yields the solution x; =1, x, =1 x3 =1,
x4 = 1. The balanced equation is

CH;COF + H,0 — CH3COOH + HF
We are looking for positive integers x4, x,, X3, and x, such that
x1(CO2) + x5 (Hz0) = x3(CeHy206) + x4(02)

The number of atoms of carbon, hydrogen, and oxygen on both sides must equal:

Left Side Right Side
Carbon Xy = 6x3
Hydrogen 2x, = 12x5
Oxygen 2x1 +x, = 6x3+ 2x,
The linear system
Xq -  6x3 0
2x2 - 12.X3 = 0
le + xZ - 6X3 - ZX4 = 0
[1 0 0 -1 0]
has the augmented matrix whose reduced row echelon formis{0 1 0 -1 0}
lo 01 —= oJ

I 1 . . -
The general solutionisx; = ¢, x, =¢t, x3 = chxa=t where t is arbitrary. The smallest positive

integer values for the unknowns occur when t = 6, which yields the solution x; =6, x, = 6, x3 =
1, x, = 6. The balanced equation is

6C0, + 6H,0 - CcH;,04 + 60,

We are looking for a polynomial of the form p(x) = ao + a;x + a,x? suchthat p(1) =1, p(2) = 2,
and p(3) = 5. We obtain a linear system

aO + al + az = 1
a + 2a, + 4a, = 2
aO + 3a1 + 9a2 = 5



1.9 Applications of Linear Systems 113

1 0 O 2
[ts augmented matrix has the reduced row echelon form [0 1 0 —2].

0 0 1 1
There is a unique solution a, = 2, a; = -2, a, = 1.

The quadratic polynomial is p(x) = 2 — 2x + x?2.

We are looking for a polynomial of the form p(x) = a, + a;x + a,x? such that p(0) =0, p(—1) =1,
and p(1) = 1. We obtain a linear system

(20 = 0
(2N - + a; = 1
(2N + aq + a; = 1
1 0 0 0
Its augmented matrix has the reduced row echelon form [0 1 0 0.
0 011

There is a unique solution ay, = 0, a; = 0, a, = 1. The quadratic polynomial is p(x) = x2.

We are looking for a polynomial of the form p(x) = ay + a;x + a,x? + a3x3 such that p(—1) = —1,
p(0) =1, p(1) = 3 and p(4) = —1. We obtain a linear system

ao - a1 + az - a3 = _1
Ag = 1
a + a + a, + as = 3
ao + 4(11 + 16(12 + 64(13 = _1
[1 0 0 O 1]
010 0 §I
[ts augmented matrix has the reduced row echelon form 00 1 0 ol
[0 00 1 —1‘
6
There is a unique solution ap =1, a; = % a, =0, a; = —%.

The cubic polynomial is p(x) =1 + %x — %x3.
We are looking for a polynomial of the form p(x) = ay + a;x + a,x? + asx3 such that p(0) = 0,
p(2) =5, p(4) =8 and p(6) = 3. We obtain a linear system

Qo

ag + 2a, + 4a, + 8as
ay + 4a; + 16a, + 64daz
a, + 6a; + 36a, + 216az

10
[O

1
[ts augmented matrix has the reduced row echelon form |0 0
0

I
w Ul o

o =]
—_ o O O
|

olRrNIRDN O
—

. . . 1
There is a unique solution ag =0, a; =2, a, = >, 03 = — 3.
1
8

The cubic polynomial is p(x) = 2x + %xz —-x5.
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17. (a) We are looking for a polynomial of the form p(x) = ay + a;x + a,x? such that p(0) = 1 and
p(1) = 2. We obtain a linear system
Ao = 1
Ao + aq + a; = 2
1 0 0 1]

01 11
The general solution of the linear systemisay, =1, a; =1 —t, a, =t where t is arbitrary.

Its augmented matrix has the reduced row echelon form [

Consequently, the family of all second-degree polynomials that pass through (0,1) and (1,2)
can be represented by p(x) = 1+ (1 — t)x + tx? where t is an arbitrary real number.

(b)

VA ~
N

24 e

1 e T\ ({\\
Lo\
:p : >
1 X

True-False Exercises

(a) False. In general, networks may or may not satisfy the property of flow conservation at each node
(although the ones discussed in this section do).

(b) False. When a current passes through a resistor, there is a drop in the electrical potential in a circuit.
(c) True.

(d) False. A chemical equation is said to be balanced if for each type of atom in the reaction, the same
number of atoms appears on each side of the equation.

(e) False. By Theorem 1.9.1, this is true if the points have distinct x-coordinates.

1.10 Leontief Input-Output Models

L@ c=[030 02

(b) The Leontief matrixis I — C = [

)

1 0]_ 0.50 0.25]: 0.50 —0.25]
0 1 0.25 0.10 —0.25 0.90

7,000

the outside demand vectoris d = [14 000J;



(a)

(b)

(a)

(b)

()

(b)
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The Leontief equation (I — C)x = d leads to the linear system with the augmented matrix
0.50 —-0.25 7,000

—0.25 0.90 14,000

784,000
10 —; [1 0 25,290.32]

0 1 70(;.;)00 ~ 1o 1 22,580.65

]. Its reduced row echelon form is

To meet the consumer demand, M must produce approximately $25,290.32 worth of
mechanical work and B must produce approximately $22,580.65 worth of body work.

0.30 0.20]

¢= [0.10 0.60

)

1 0]_ 0.30 0.20]= 0.70 —0.20]
0 1 0.10 0.60 —0.10 0.40

130,000]
130,000F

The Leontief matrixis I — C = [

the outside demand vectoris d = [

The Leontief equation (I — C)x = d leads to the linear system with the augmented matrix
[ 0.70 —0.20 130,000 1 0 300,000

—010 0.40 130’000].Itsreducedrowechelonformls [0 1 400,000}

To meet the consumer demand, the economy must produce $300,000 worth of food and
$400,000 worth of housing.

0.10 0.60 0.40
C=1{030 0.20 0.30
0.40 0.10 0.20

1 0 0] 0.10 0.60 0.40 090 -0.60 -0.40
The Leontief matrixis I —C=|0 1 0|—10.30 0.20 0.30] =|(-0.30 0.80 —-0.30};
0 0 1l 0.40 0.10 0.20 —-0.40 -0.10 0.80

19307
the outside demand vectoris d = [3860].
5790

The Leontief equation (I — C)x = d leads to the linear system with the augmented matrix
0.90 -0.60 —-0.40 1930
[—0.30 0.80 —0.30 3860].
—-0.40 -0.10 0.80 5790
1 0 0 31,500
Its reduced row echelon form is [0 10 26,500].
0 0 1 26,300

$31,500
The production vector that will meet the given demand is x = [$26,500].
$26,300

0.30 0.35 0.30

0.40 0.20 0.45
C =
0.15 0.10 0.20

1 0 0 0.40 0.20 0.45 0.60 —-0.20 -0.45
The Leontief matrixis I —C=|0 1 0|—/0.30 0.35 0.30]=|-0.30 0.65 —-0.301;
0 0 1 0.15 0.10 0.20 —-0.15 -0.10 0.80
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5400]

900

The Leontief equation (I — C)x = d leads to the linear system with the augmented matrix

0.60 -0.20
—0.30 0.65
-0.15 -0.10

Its reduced row echelon form is

The production vector that will meet the given demand is

[ 09 —03]
I-C= [—0.5 0.6]'
Q
_ _ 14 _ 13
x=({J-0C)""'d= 50
39
107 —01].
I-C= [—0.3 0.3]’
5
i |3
x=0-0)"'d= .
3

(a) The Leontief matrixis I — C = [
The Leontief equation (I — C)x

1
[5 0 2]. Its reduced row echelon form is [
0 0 O

—0.45 5400
—0.30 2700].
0.80 900
[1 0 0 9378000-|
479
| 7830000 | 1 0 0 19578.29
0 10 2o | [0 1 0 16346.56|.
| 3276000 0 0 1 6839.25
0 0 1 =—|
479

Q
_ -1 _ 10070.6 0.3]_ [13
=07 =55 1os 0.9]‘ 50
39
10 1600
13 [50] | 13 ~ [123.08]
30[L60] ~ |7900| T 1202.56
13 39
5
-1 100703 0.17 _ |3
T=0"=lo3 0.7]_ 5
3
5 400
olr221_| 9| - 44.44]
35|114] 7 |s20] T 191.11
9
1 0]
2 .
0 0

1 0 4
0 0 O

$19578.29
X~ [$16346.56].
$6839.25
10
13
30
13
5
9
35
9

= [g] leads to the linear system with the augmented matrix

] therefore a production vector can be

found (namely, [;}] for an arbitrary nonnegative t) to meet the demand.

On the other hand, the Leontief equation (I — C)x = [ﬂ leads to the linear system with the

augmented matrix [E

Lo 2

0 0 1

]. Its reduced row echelon form is [

1 0 0

0 0 1];thesystemls

inconsistent, therefore a production vector cannot be found to meet the demand.
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1
(b) Mathematically, the linear system represented by [E 0

o)L -

Clearly, if d, = 0 the system has infinitely many solutions: x; = 2d;; x, = t where t is an

X1 _ dl .
] [xz] = [dz] can be rewritten as

arbitrary nonnegative number.
If d, # 0 the system is inconsistent. (Note that the Leontief matrix is not invertible.)

An economic explanation of the result in part (a) is that ¢, = [(1)] therefore the second sector

consumes all of its own output, making it impossible to meet any outside demand for its

products.
1 1 1
| 2 —3 3
1 7 1
I=C=l=7 3§ 73
ll—l R
2 4 8

If the open sector demands k dollars worth from each product-producing sector, i.e. the outside

k
demand vectoris d = [k] The Leontief equation (I — C)x = d leads to the linear system with the
k
B
L ; L 1 0 0 18k
augmented matrix -3 s "2 k | Itsreduced row echelon formis [0 1 0 16k]|.
[ L L . [ 0 0 1 16k
-z -3 5 kI

We conclude that the first sector must produce the greatest dollar value to meet the specified open
sector demand.

From the assumption c¢;;¢1, < 1 — ¢;4, it follows that the determinant of

1-c —c
det(I — C) = det([ 1 112 ) =1 —cy1 — c12C21 is nonzero. Consequently, the Leontief matrix

—C21
1 [ 1 C12

is invertible; its inverseis (I —C)~! = 1
€21 —C11

P — ] Since the consumption matrix C
1-C11=C12€21

has nonnegative entries and 1 — ¢;; > ¢,,¢;, = 0, we conclude that all entries of (I —C)™?! are
nonnegative as well. This economy is productive (see the discussion above Theorem 1.10.1) - the
equation x — Cx = d has a unique solution x = (I — €)~'d for every demand vector d.

True-False Exercises

(a) False. Sectors that do not produce outputs are called open sectors.

(b) True.

(c) False.The ith row vector of a consumption matrix contains the monetary values required of the ith

sector by the other sectors for each of them to produce one monetary unit of output.
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(d)
(e)
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True. This follows from Theorem 1.10.1.

True.

Chapter 1 Supplementary Exercises

The corresponding system of linear equations is
3x1 - X3 + 4'X4_ = 1
2x1 + 3x3 + 3X4 = -1

w
|
_
o
S
[N

<4——— The original augmented matrix.

N
o
w
w
I
—_

U=
I
[EEN
I
w
—_
[\

<4—— —1timesthe second row was added to the first row.

2 0 3 3 -1
- —2 times the first r dded to the second r
0 2 9 1 -5 — imes the first row was added to the second row.
1 -1 -3 1 27
0 1 9 1 5 <«——— The second row was multiplied by %
2 2 24

This matrix is in row echelon form. It corresponds to the system of equations

X1 - X - 3X3 + Xg = 2
9 1 5
x2 + E.x?) + EX4 = _E

Solve the equations for the leading variables

x1=x2+3x3_x4+2
9 1 5

Xy = _§x3_EX4_E

then substitute the second equation into the first

3 3 1
E T T Ty
9 1 5
=TTy
If we assign x3 and x, the arbitrary values s and t, respectively, the general solution is given by the
formulas
3 3 . 1 9 1 . 5 _ _.
¥n=—55-3 > Xp=—55-3 > X3=S, Xy =

The corresponding system of linear equations is
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x1 + 4’X2 = _1
—2x; — 8xp, = 2
3X1 + 12x2 = _3
0 0
1 4 —1]
-2 -8 2 - .
3 12 -3 <4——— The original augmented matrix.
0 0 0
1 4 -—-1]
0 0 0 2 times the first row was added to the second row and
0 0 0 —3 times the first row was added to the third row.
0 0 0]

This matrix is both in row echelon form and in reduced row echelon form. It corresponds to the
system of equations

x; + 4x, = -1
0 = 0
0 = 0
0 = 0

If we assign x, an arbitrary value t, the general solution is given by the formulas
X1=_1_4‘t, X2=t

The corresponding system of linear equations is

2x1 - 4XZ + X3 = 6
—4x1 + 3.X3 = —1
XZ - X3 = 3
—4 1 6
- 0 3 -1 <4——— The original augmented matrix.
1 -1 3
2 !
_ 0 3 -1 <«—— The first row was multiplied by %
1 -1 3]

11 <4—— 4 times the first row was added to the second row.

|
= oo N

The second and third rows were interchanged.

U=
=

<4—— 8times the second row was added to the third row.

cCOoO R OO R OO R O P ObBN
—_
| |
W kERENIRr UlRRNRr = U

o R
|
w
Ul w W
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1 -2 - 3
0 1 -1 3 <4——— The third row was multiplied by .
o o 1 -2 i

3

This matrix is in row echelon form. It corresponds to the system of equations

X, — 2x, + §x3 = 3
X - X3 = 3

35

X3 = —?

Solve the equations for the leading variables

1
x1=2x2—zx3+3

xZ:.X3+3
.35
X3 = 3

then finish back-substituting to obtain the unique solution
17 26 35
X1:_7, Xy = —— x3:__

4. The corresponding system of linear equations is

3x1 + x2 = _2
—9x1 - 3x2 == 6
6x1 + ZXZ - 1
3 1 -2]
-9 -3 6 <4——— The original augmented matrix.
6 2 1
3 1 -2 . .
3 times the first row was added to the second row and
0 0 0 . i .
0 0 5 —2 times the first row was added to the third row.

Although this matrix is not in row echelon form yet, clearly it corresponds to an inconsistent linear

System
3x1 + Xy = -2
0 = 0
0 = 5

since the third equation is contradictory. (We could have performed additional elementary row
1 2
1 3 "3
operations to obtain a matrix in row echelon form [, 1] I
0 0 0
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3 4 .
- —= X
5 5 5
' 4 3 <4—— The augmented matrix corresponding to the system.
5 5 Yl
4
1 -3 3%
4 3 <«—— The first row was multiplied by %
5 5 Yl
4 ;
1 -3 =X
5 4 — —% times the first row was added to the second row.
0 5 —Ex + y
4 5
1 —5 gx
. 3 <4——— The second row was multiplied by %
0 1 —EX + Ey
3 4
1 0 -x+=-y
5 5 4
. 3 «— times the second row was added to the first row.
0 1 —EX + Ey
. ;3 4 ' 4 3
The system has exactly one solution: x' = Xty and y' = — sxtoy

6. We break up the solution into three cases:

Casel:cosf@ # 0and sin@ # 0

cosf —sinf x] _ _
sin @ cosd y <4—— The augmented matrix corresponding to the system.
_ sin@ X 7
cos® cosf <«—— The first row was multiplied by ——.
sinf  cos# vyl cost
sin @ x ] ) ) )
1 T Cos0 cos 0 —sin @ times the first row was added to the second
1 sin @ +— (Sin2 [ n cos?6 1 )
0 cos @ - cos 6 cos 6 cos®  cos@’”
. sin @ x
[ cos® cos6 <4——— The second row was multiplied by cos 8.
0 1 ycosf —xsinf]
ing . .
1 0 xcosf + y sin [k z:: ; times the second row was added to the first row
; — " xsinZ 6 29
0 1 ycosf —xsind| (-XsinZ6 X _xc0s'0 _ o5 6)
cos 6 cos 6 cos 6 ’
The system has exactly one solution: x’ = xcosf + ysinf and y' = —xsin6 + y cos 6.
Case II: cos® = 0 which implies sin? § = 1. The original system becomes x = —y’sin#8, y = x’sin#.

Multiplying both sides of the each equation by sin 8 yields x' = ysin6, y' = —xsin®.
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Case III: sin® = 0, which implies cos? 8 = 1. The original system becomes x = x’ cos, y =
y' cos 6. Multiplying both sides of each equation by cosé yields x’ = x cos8, y’' =y cos®8.

Notice that the solution found in case I
x' =xcosf +ysinf and y' = —xsiné + y cos 6.

actually applies to all three cases.

7 1 1 1 97 . )
' 1 5 10 44 <«—— The original augmented matrix.
1 1 1 97 . .
0 4 9 35 <4—— —1times the first row was added to the second row.
1 11 9
[0 1 9 35 <4——— The second row was multiplied by i.
4 4
5 17
Lo =3 3
o 35 <4—— —1times the second row was added to the first row.
0 1 - =
4 4

If we assign z an arbitrary value t, the general solution is given by the formulas

1,5, _35_9,
Y=Y YT b

z=1t
The positivity of the three variables requires that i + %t >0, 375 - zt > 0,and t > 0. The first
inequality can be rewrittenas t > — i, while the second inequality is equivalent to t < %. All three

- 35 . e
unknowns are positive whenever 0 < t < > There are three integer values of t = z in this interval:

1, 2, and 3. Of those, only z = t = 3 yields integer values for the remaining variables: x = 4,y = 2.

8. Let x,y,and z denote the number of pennies, nickels, and dimes, respectively. Since there are 13
coins, we must have

x+y+z=13.
On the other hand, the total value of the coins is 83 cents so that

x + 5y + 10z = 83.

The resulting system of equations has the augmented matrix [1 é 1(1) 51331 whose reduced row
10 -2 =2
echelon form is : 2
9 35

If we assign z an arbitrary value t, the general solution is given by the formulas

_ 9.5, _35_9, _,
X=ToTgh YTy Ty 2T
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However, all three unknowns must be nonnegative integers.

L . . : 9 5 . 18
The nonnegativity of x requires the inequality — Stot= 0,ie, t=> =

: : 35 9 . 0
Likewise for y, 5 .t 0 yields t < %.

18 70 . . : - .
When S St=, all three variables are nonnegative. Of the four integer t = z values inside this

interval (4,5, 6,and 7), only t = z = 6 yields integer values for x and y.

We conclude that the box has to contain 3 pennies, 4 nickels, and 6 dimes.

(@)

(b)

(9

(d

|

a 0 b 2]
a a 4 4 <4——— The augmented matrix for the system.
0 a 2 bl
a O b 2]
0 a 4—-b 2 <«—— -1 times the first row was added to the second row.
0 a 2 bl
a 0 b 2
0 a 4-b 2 <4——— —1 timesthe second row was added to the third row.
0 0 b—2 b-—2]

1

the system has a unique solution if a # 0 and b # 2 (multiplying the rows by %, %, and Py

10 2 2

respectively, yields a row echelon form of the augmented matrix 0 1 Xt 2 )
a
0 0 1 1

the system has a one-parameter solution if a # 0 and b = 2 (multiplying the first two rows by%

1 0 2 2
a a
yields a reduced row echelon form of the augmented matrix [ 1 2 2|)
a a
0 0 0O
the system has a two-parameter solutionifa = 0 and b = 2
0 0 1 1
(the reduced row echelon form of the augmented matrixis{0 0 0 0])
0 0 0O
the system has no solution ifa = 0 and b # 2
0 010
(the reduced row echelon form of the augmented matrixis|0 0 0 1|)
0 0 0O
1 1 1 4
0 0 1 2 <4——— The augmented matrix for the system.
0 0 a2—4 a-—2l
1 1 1 4
0 0 1 2 <«——— —a® + 4 times the second row was added to the third .
0 0 0 —2a%?+a-+6l
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From quadratic formula we have —2a? +a + 6 = —2 (a + ;) (a—2).

. 3 . : :
The system has no solutions when a # 2 and a # — 3 (since the third row of our last matrix would

then correspond to a contradictory equation).
e : 3
The system has infinitely many solutions when a =2 or a = -3

No values of a resultin a system with exactly one solution.

For the product AKB to be defined, K must be a 2 X 2 matrix. Letting K = [? Z] we can write

1 4 1 4
L S (R R A

2a + 8¢ b+4d —-b-—4d
—4a+6¢c —2b+3d 2b-3d
2a —4c b—2d —-b+2d
The matrix equation AKB = C can be rewritten as a system of nine linear equations

2a + 8¢ = 8

b + 4d = 6

- b — 4d = -6

—4a + 6c = 6

- 2b + 3d = -1

2b — 3d = 1

2a - 4c = —4

b - 2d = 0

- b + 2d = 0
which has a unique solution a = 0,b = 2,c = 1,d = 1. (An easy way to solve this system is to first
split it into two smaller systems. The system 2a + 8c = 8, —4a + 6¢c = 6, 2a — 4c = —4 involves a

0 2].

and c only, whereas the remaining six equations involve just b and d.) We conclude that K = [ 1 1

Substituting the values x = 1, y = —1, and z = 2 into the original system yields a system of three
equations in the unknowns a, b, and c:

a - b - 32 = -3
-2 + b + 2c = -1
a + 3)(-1) - 2c = -3
that can be rewritten as
a — b = 3
b + 2c =1
a — 2c =0
1 0 O 2
The augmented matrix of this system has the reduced row echelon form [O 10 —1]. We
0 0 1 1
conclude that for the original system to havex = 1,y = —1,and z = 2 as its solution, we must let

a=2,b=-1,and ¢ = 1.
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(Note that it can also be shown that the system with a =2, b=—-1,and c=1hasx =1,y = —1,
and z = 2 as its only solution. One way to do that would be to verify that the reduced row echelon
form of the coefficient matrix of the original system with these specific values of a,b and c is the
identity matrix.)

(a) X mustbea 2 X 3 matrix. Letting X = [Z 2 ;] we can write

X_i (1) é]:[a b c][_i (1) (1)]:[—61+b+36 b+c a-c
3 1 -1 d e f 3 1 -1 —d+e+3f e+f d-f
therefore the given matrix equation can be rewritten as a system of linear equations:
-a + b + 3c = 1
b + ¢ = 2
a - < = 0
- d + e + 3f = -3
e + f = 1
d - f = 5
The augmented matrix of this system has the reduced row echelon form
[1 0 00 0O —1]
01 0 0 0O
|8 8 (1) 2 8 8 1|sothesystemhasaumquesolutlon
llO 0 00 10 J
0 00 0 01 1
a=-1b=3c=-1d=6e=0f=1landx=["_ > 1|
6 0 1

(An alternative to dealing with this large system is to split it into two smaller systems instead:
the first three equations involve a, b, and c only, whereas the remaining three equations involve
justd, e, and f. Since the coefficient matrix for both systems is the same, we can follow the
procedure of Example 2 in Section 1.6; the reduced row echelon form of the matrix

-1 1 3]1]-3 1 0 0]-17]6
0 1 1] 2 1 ] is [ 01 0 310 ].)
1 0 =110 5 0 0 11-111
Yet another way of solving this problem would be to determine the inverse
-1 0 17! 1 -1 -1
1 1 0] = [—1 2 —1] using the method introduced in Section 1.5, then multiply
L 3 1 -1 2 -1 1

both sides of the given matrix equation on the right by this inverse to determine X:
1 -1 -1
1 2 0 -1 3 -1
X=| ] [—1 2 —1] = ]
-3 1 5 5 _1 1 6 0 1
(b) X mustbea?2 X 2 matrix. Letting X = [Ccl b] we can write

] FR R | R B MR

therefore the given matrix equatlon can be rewritten as a system of linear equations:
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a + 3b = -5
—a = -1
2a + b = 0
c + 3d = 6
— c = -3
2c + d 7
1 0 0 O 1
[0 1 0 0 — ]|
. . 0 01 0 3
The augmented matrix of this system has the reduced row echelon form | 00 0 1 1
I0 0 0 O OI
0 0 0 O 0
the system has a unique solutiona =1,b = —2,¢c = 3,d = 1. We conclude that X = [é _ﬂ

(An alternative to dealing with this large system is to split it into two smaller systems instead:
the first three equations involve a and b only, whereas the remaining three equations involve
just ¢ and d. Since the coefficient matrix for both systems is the same, we can follow the
procedure of Example 2 in Section 1.6; the reduced row echelon form of the matrix

1 3|5 6 10 113
-1 0| —-1]-3|is|0 1| -=2(1])
2 1 0 7 0 0 010

X must be a 2 X 2 matrix. Letting X = [(cl Z] we can write

3 1 1 4 3 11[a b a byl 4
[—1 z]X_X[z 0 _[—1 2 [c d]_[c d”Z 0
=[3a+c 3b+d]_[a+2b 4a]
—a+2c —-b+2d c+2d 4c
_ [2a—2b+c —4a+3b+d]
—a+c—2d —-b—4c+2d
therefore the given matrix equation can be rewritten as a system of linear equations:

2a — 2b + ¢ = 2
—4a + 3b + d = =2
—a + ¢ — 2d = 5
— b — 4c + 2d = 4
100 0 —=
37
010 0 —==
The augmented matrix of this system has the reduced row echelon form 20
0 01 0 -—-=
37
0001 -2
- 37_
sothesystemhasauniquesolutiona=—g,b=—@,c=—2,d=—ﬁ.
37 37 37 37
_ 13 160
_ 37 37
We conclude that X = 20 el
37 37

From Theorem 1.4.1, the properties Al = IA = A (page 43) and the assumption A* = 0, we
have
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(I-AU+A+A2+ A3 =11 +1A+ 1A% + 1A% — Al — AA — AA? — AA3
=]+A+A%+ A3 —A— A2 - A3 - A%
=1

This shows that (1 —A)™! =1+ A + A% + A3.

(b) From Theorem 1.4.1, the properties AI = IA = A (page 43) and the assumption A"*1 = 0, we
have

I—ADU+A+A*+ -+ A1+ 4™

=H+IA+TA? + -+ A"+ IA™ — Al — AA — AA? — - — AA™T — AA™
=I+A4+A2+ -+ AT AT —A— A2 — A3 — - AT — A
=1

We are looking for a polynomial of the form
p(x) =ax?+bx+c

such that p(1) = 2, p(—1) = 6, and p(2) = 3. We obtain a linear system

a + b + ¢ = 2
a — b + ¢ = 6
4a + 2b + ¢ = 3
1 00 1
Its augmented matrix has the reduced row echelon form [0 1 0 —2].
0 01 3
There is a unique solution a =1, b = -2, ¢ = 3.

Since p(—1) = 0 and p(2) = —9 we have the equations a — b+ c =0 and 4a + 2b + ¢ = —9.
From calculus, the derivative of p(x) = ax? + bx + ¢ is p'(x) = 2ax + b.

For the tangent to be horizontal, the derivative p’(2) = 4a + b must equal zero. This leads to the
equation 4a+ b = 0.

We proceed to solve the resulting system of two equations:

a — b + ¢ = 0
4a + 2b + ¢ = -9
4a + b = 0
10 0 1
The reduced row echelon form of the augmented matrix of this systemis [0 1 0 —4|.Therefore,
0 01 -5
the values a =1, b = —4, and ¢ = —5 resultin a polynomial that satisfies the conditions specified.

When multiplying the matrix J,, by itself, each entry in the product equals n. Therefore, J,J,, = nJ,.
1
=1 (1= -21n)
=]? - Iﬁ]n —Jud+ s ﬁ]n ——  Theorem 1.4.1(f) and (g)

1 1
ZI_E]n_]n+]nE]” —  property Al = IA = Aonp.43
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=] — ﬁ]n — .+ n—iljn_]n 4——  Theorem 1.4.1(m)
1 n
=1 —E]n In E]n T Jh=mh
=1+ (n‘__ll -1+ ﬁ)]n <+———  Theorem 1.4.1(j) and (k)



