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Summarizing the Essentials

1 Structure of Vector Space

• The fundamental notion that emerges naturally from the axioms of vector spaces
is the concept of linear combinations (of vectors), from which the following
fundamental relations among vectors naturally follow

– Linearly independent: “linear combinations = 0 ” has only the trivial
solution.

– Linearly dependent: “linear combinations = 0” has non trivial solution.

• A set of vectors in linearly dependent if and only if one of them can be expressed
in terms of the others.

– Basis: A set of linearly independent vectors such that all vectors can be
written as linear combinations of them.

– Dimension: The number of vectors in any basis.

• Dimension Formula: For 𝑈 , 𝑊 two subspaces of 𝑉 , then 𝑈 + 𝑊 and 𝑈 ∩ 𝑊
are subspaces and we have

𝑑𝑖𝑚 (𝑈 + 𝑊) = 𝑑𝑖𝑚 𝑈 + 𝑑𝑖𝑚 𝑊 − 𝑑𝑖𝑚 (𝑈 ∩ 𝑊)

– This is compatible with the general Inclusion-Exclusion Principal (容斥
原理) and can be generalized accordingly, for example

𝑑𝑖𝑚 (𝑈1 + 𝑈2 + 𝑈3) = 𝑑𝑖𝑚 𝑈1 + 𝑑𝑖𝑚 𝑈2 + 𝑑𝑖𝑚 𝑈3−

−𝑑𝑖𝑚 (𝑈1 ∩ 𝑈2) − 𝑑𝑖𝑚 (𝑈1 ∩ 𝑈3) − 𝑑𝑖𝑚 (𝑈2 ∩ 𝑈3) + 𝑑𝑖𝑚 (𝑈1 ∩ 𝑈2 ∩ 𝑈3)

• Any 𝑛 + 1 vectors in a 𝑛-dimensional vector space must be linear independent.

• Basis Extension: Any set of linearly independent vectors in 𝑉 can be extended
to a basis of 𝑉 .

– If 𝑉 is endowed with an inner product, so that the notion of orthogonality
makes sense, then we have the concept of orthonormal basis. Then any
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linearly independent set can be transformed into an orthogonal set by by
applying the Gram-Schmidt process.

– In particularly, any inner product space has orthogonal basis. And any or-
thogonal set can be extended to a orthonormal basis.

– A set of orthogonal vectors must be linearly independent.

• Gram-Schmidt process is based on the notion of orthogonal projection:

𝑃𝑟𝑜𝑗wv ∶= ⟨v, w⟩
||w||2 w

– In general, if 𝑊 is a subspace of 𝑉 that has orthogonal basis {w1, ⋯ , w𝑘},
then for any v ∈ 𝑉 , its orthogonal projection onto subspace 𝑊 is given by

𝑃𝑟𝑜𝑗𝑊 v = ⟨v, w1⟩
||w1||2 w1 + ⋯ + ⟨v, w𝑘⟩

||w𝑘||2 w𝑘

– In particularly, if {w1, ⋯ , w𝑘} is orthonormal, then we have

𝑃𝑟𝑜𝑗𝑊 v = ⟨v, w1⟩w1 + ⋯ + ⟨v, w𝑘⟩w𝑘

• Inner product structure induces normal (distance) function: ||v||2 = ⟨v, v⟩.
Conversely, any normal induces an inner product via polarization identity.

– Real case:
⟨u, v⟩ = ||u + v||2 − ||u − v||2

4
– Complex case:

⟨u, v⟩ = ||u + v||2 − ||u − v||2 + 𝑖||u + 𝑖v||2 − 𝑖||u − 𝑖v||2
4

• Norm and inner product enjoy the following properties

– Triangle inequality: ||u + v|| ≤ ||u|| + ||v||.
– Pythagoras’ Law: If u ⟂ v, then ||u + v|| = ||u|| + ||v||.
– Cauchy-Schwarz inequality: |⟨𝑢, v⟩| ≤ ||u||v||.

• For complex inner product, it is conjugate linear in the 2𝑛𝑑 slot, i.e.,

⟨u, 𝑘v + 𝑙w⟩ = �̄�⟨u, v⟩ + ̄𝑙⟨u, w⟩
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which is equivalent to ⟨u, v⟩ = ⟨v, u⟩. In particularly, ⟨u, u⟩ ∈ ℝ. So that
||u||2 = ⟨u, u⟩ holds in both cases.

• Let 𝑈⟂ the orthogonal complement of 𝑈 in 𝑉 , then 𝑑𝑖𝑚 𝑈 +𝑑𝑖𝑚 𝑈⟂ = 𝑑𝑖𝑚 𝑉 .

2 Linear Transformations and Linear Operators

• A linear transformation 𝑇 between 𝑉 and 𝑊 is a map 𝑇 ∶ 𝑉 → 𝑊 that is
linear, i.e., keeps the linear combinations of vectors in 𝑉 and 𝑊 . That is

𝑇 (𝑘v + 𝑙w) = 𝑘𝑇 (v) + 𝑙𝑇 (w) for v ∈ 𝑉 , w ∈ 𝑊 and ∀ 𝑘, 𝑙

– A linear transformation form 𝑉 to 𝑉 is called a linear operator.

– Linear transformations can be composed, 𝑇1 ∘ 𝑇2(v) ∶= 𝑇1(𝑇2(v)). This is
possible if 𝑅𝑎𝑛𝑔 (𝑇2) ⊂ 𝐷𝑜𝑚𝑎𝑖𝑛 (𝑇1).

– Linear transformation can be inverted only if it is one-to-one.

• Linear transformation 𝑇 ∶ 𝑉 → 𝑊 gives a relation between 𝑉 and 𝑊 .

– If 𝑇 is both one to one and onto, then we call 𝑇 establishes an isomorphism
between 𝑉 and 𝑊 , and denoted by 𝑉 ≅ 𝑊 .

– Isomorphic vector spaces have the same dimension. And conversely, if 𝑑𝑖𝑚 𝑉 =
𝑑𝑖𝑚 𝑊 , then 𝑉 ≅ 𝑊 . Indeed, suppose 𝑉 and 𝑊 have basis given respectively
by {v1, ⋯ , v𝑛} and {w1, ⋯ , w𝑛}. Then the linear transformation given by
𝑇 (𝑘1v1 +⋯+𝑘𝑛v𝑛) ∶= 𝑘1w1 +⋯+𝑘𝑛w𝑛 establishes an isomorphism 𝑉 ≅ 𝑊 .

• The extent that a general linear transformation 𝑇 ∶ 𝑉 → 𝑊 fails to be an isomor-
phism is measured by its kernel and range.

– 𝑘𝑒𝑟 (𝑇 ) ∶= {v ∈ 𝑉 ∶ 𝑇 (v) = 0} ⊂ 𝑉 . 𝑇 is one-to-one if and only if 𝑘𝑒𝑟 (𝑇 ) =
{0}. So, the larger the size of 𝑘𝑒𝑟, the further for 𝑇 from being an injection
(a.k.a one to one).

– 𝑅𝑎𝑛𝑔 (𝑇 ) ∶= {w ∈ 𝑊 ∶ w = 𝑇 (v) for some v ∈ 𝑉 } ⊂ 𝑊 . 𝑇 is onto if and
only if 𝑅𝑎𝑛𝑔𝑒 (𝑇 ) = 𝑊 . So, the smaller the size of 𝑟𝑎𝑛𝑔𝑒, the further for 𝑇
from being an surjection (a.k.a onto).

• Fundamental identity: 𝑑𝑖𝑚 𝑘𝑒𝑟 (𝑇 ) + 𝑑𝑖𝑚 𝑅𝑎𝑛𝑔𝑒 (𝑇 ) = 𝑑𝑖𝑚 (𝑉 ).
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3 Matrix as “Coordinates”

• We can coordinalize a vector space 𝑉 by choosing a basis 𝐵 ∶= {v1, ⋯ , v𝑛}, then
we have the coordinate map which gives the following isomporphism

[ ]𝐵 ∶ 𝑉 ≅⟶ ℝ𝑛 v = 𝑘1v1 + ⋯ + 𝑘𝑛v𝑛 ⟼ [v]𝐵 ∶=
⎡⎢⎢
⎣

𝑘1
⋮

𝑘𝑛

⎤⎥⎥
⎦

• Different basis of 𝑉 are related by invertible matrix. If 𝐵 = {v1, ⋯ , v𝑛} and
𝐵′ = {v′

1, ⋯ , v′
𝑛} are two basis of 𝑉 . Then the transition matrix from 𝐵 to 𝐵′,

which is denoted by 𝑃𝐵′←𝐵, is defined to be

𝑃𝐵′←𝐵 ∶= [[v1]𝐵′ | ⋯ | [v𝑛]𝐵′ ] ⟺ 𝐵 = 𝐵′𝑃𝐵′←𝐵

Then for v ∈ 𝑉 , we have the coordinate transformation formula

[v]𝐵′ = 𝑃𝐵′←𝐵[v]𝐵

• Transition matrix has the following properties

– 𝑃𝐵←𝐵′ = 𝑃 −1
𝐵′←𝐵

– 𝑃𝐵←𝐵′𝑃𝐵′←𝐵′′ = 𝑃𝐵←𝐵′′ .

– If 𝑆 is the standard basis for ℝ𝑛, then for any basis 𝐵 = {v1, ⋯ , v𝑛}, we have

𝑃𝑆←𝐵 = [v1 | ⋯ | v𝑛] =∶ 𝐵

– For any two basis 𝐵 and 𝐵′ of ℝ𝑛, then above properties implies

𝑃𝐵′←𝐵 = 𝑃𝐵′←𝑆𝑃𝑆←𝐵 = 𝑃 −1
𝑆←𝐵′𝑃𝑆←𝐵 = (𝐵′)−1 ⋅ 𝐵

• Given 𝑇 ∶ 𝑉 → 𝑊 , we can coordinalize 𝑇 as follows

– Choosing basis 𝐵 = {v1, ⋯ , v𝑛} and 𝐵′ = {w1, ⋯ , w𝑚} of 𝑉 and 𝑊 respec-
tively. Then the matrix (representation) for 𝑇 ∶ 𝑉 ⟶ 𝑊 relative to the basis
𝐵 and 𝐵′ is defined to be

[𝑇 ]𝐵′𝐵 = [ [𝑇 (v1)]𝐵′ [𝑇 (v2)]𝐵′ ⋯ [𝑇 (v𝑛)]𝐵′ ]
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• In terms of coordinate representations of vectors in 𝑉 and 𝑊 via the basis 𝐵 and
𝐵′ respectively,

:::
the

::::::
linear

:::::::::::::::
transformation

::::::::::::
𝑇 ∶ 𝑉 ⟶ 𝑊

::::
can

:::
be

::::::::::::
represented

:::
as

:
a

::::::
matrix

:::::::::::::::
transformation

[𝑇 (x)]𝐵′ = [𝑇 ]𝐵′𝐵 ⋅ [x]𝐵

• In other words, at the level of coordinate representation, 𝑇 ∶ 𝑉 → 𝑊 is
represented as 𝑇𝐴 ∶ ℝ𝑛 ⟶ ℝ𝑚, where 𝐴 = [𝑇 ]𝐵′𝐵 is the matrix of 𝑇
relative to the basis 𝐵 and 𝐵′. Graphically, we have the following

𝑉 𝑊

ℝ𝑛 ℝ𝑚
≅ ≅

𝑇

𝑇𝐴

⇝
𝑉 ∋ x 𝑇 (x) ∈ 𝑊

ℝ𝑛 ∋ [x]𝐵 [𝑇 (x)]𝐵′ ∈ ℝ𝑚

𝑇

[ ]𝐵 [ ]𝐵′

𝑇𝐴

Thus, if we know the coordinate of 𝑇 (x), namely [𝑇 (x)]𝐵′ , we can “recover” 𝑇 (x)
from the inverse of the coordinate map [ ]𝐵′ as follows

𝑇 = [ ]−1
𝐵′ ∘ 𝑇𝐴 ∘ [ ]𝐵

– If 𝑉 = 𝑊 , 𝑇 ∶ 𝑉 → 𝑉 is represented by a square matrix relative to a basis 𝐵
of 𝑉 . In this case, we write [𝑇 ]𝐵 instead of [𝑇 ]𝐵𝐵.

– If 𝑇 ∶ 𝑉 → 𝑉 is invertible, then for any basis 𝐵 of 𝑉 , the matrix of 𝑇 relative
to it is also invertible, and [𝑇 −1]𝐵 = [𝑇 ]−1

𝐵 .
– The composition of linear transformations corresponds to the multiplication

of the corresponding matrices.

𝑉1 𝑉2 𝑉3

ℝ𝑑𝑖𝑚 𝑉1 ℝ𝑑𝑖𝑚 𝑉2 ℝ𝑑𝑖𝑚 𝑉3

𝑇1 𝑇2

𝑇𝐴1 𝑇𝐴2

≅ ≅ ≅

𝑇2∘𝑇1

𝑇𝐴2 ∘𝑇𝐴1 =𝑇𝐴2∘𝐴1

• For a linear operator 𝑇 ∶ 𝑉 → 𝑉 . Two matrix representations [𝑇 ]𝐵 and [𝑇 ]𝐵′ are
related by similarity relation.

[𝑇 ]𝐵′ = 𝑃 −1
𝐵←𝐵′ [𝑇 ]𝐵𝑃𝐵←𝐵′ = 𝑃𝐵′←𝐵[𝑇 ]𝐵𝑃𝐵←𝐵′
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• If a real vector space 𝑉 is endowed with an inner product structure, and we
consider orthonormal basis with respect to it. Then the transition matrix between
two orthonormal basis is orthogonal. i.e.,

𝐴𝑇 = 𝐴−1 or 𝐴𝐴𝑇 = 𝐴𝑇 𝐴 = 𝐼.

– The rows and columns of an orthogonal matrix form an orthonormal basis.

– The product of two orthogonal matrix is orthogonal.

– The inverse of an orthogonal matrix is orthogonal.

• If a complex vector space 𝑉 is endowed with an inner product structure, and we
consider orthonormal basis with respect to it. Then the transition matrix between
two orthonormal basis is unitary. i.e.,

𝐴∗ ∶= 𝐴𝑇 = 𝐴−1 or 𝐴𝐴∗ = 𝐴∗𝐴 = 𝐼.

– The rows and columns of an unitary matrix form an orthonormal basis.

– The product of two unitary matrix is orthogonal.

– The inverse of an unitary matrix is unitary.

• 𝐴 is orthogonal (unitary) if and only if 𝐴 keeps the dot product, i.e.,

𝐴v • 𝐴w = v • w

if and only if 𝐴 keeps the norm, i.e.,

||𝐴v|| = ||v||

4 Similarity and Diagonalization

• For a linear operator 𝑇 ∶ 𝑉 → 𝑉 , which is represented by 𝐴 = [𝑇 ]𝐵. If we have
another basis 𝐵′ = {w1, ⋯ , w𝑛} such that [𝑇 ]𝐵′ = 𝐷 = 𝑑𝑖𝑎𝑔{𝜆1, ⋯ , 𝜆𝑛}. Then
we call the linear operator 𝑇 (or the corresponding matrix 𝐴) is diagonalizable.

– This means 𝑇 w𝑖 = 𝜆𝑖w𝑖 ∀𝑖 = 1, ⋯ , 𝑛. And we have

𝐷 = [𝑇 ]𝐵′ = 𝑃𝐵′←𝐵[𝑇 ]𝐵𝑃𝐵←𝐵′ = 𝑃 −1
𝐵←𝐵′𝐴𝑃𝐵←𝐵′
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Denote by 𝑃 = 𝑃𝐵←𝐵′ the transition matrix, then the above becomes

𝐷 = 𝑃 −1𝐴𝑃

• In particularly, given 𝐴 ∈ 𝑀𝑛×𝑛, we view it as matrix transformation 𝑇𝐴 ∶ ℝ𝑛 →
ℝ𝑛. Then we see that

– 𝐴 is itself the matrix representation of 𝑇𝐴 relative to the standard basis
𝑆 = {e1, ⋯ , e𝑛}.

– If 𝐴 is diagonalizable, then ∃ new basis 𝑃 = {v1, ⋯ , v𝑛} such that 𝐴v𝑖 = 𝜆𝑖v𝑖
for some scalars 𝜆𝑖, 𝑖 = 1, ⋯ , 𝑛.

– Denote by 𝑃 = [v1 | ⋯ | v𝑛], then 𝐴v𝑖 = 𝜆𝑖v𝑖 means 𝐴𝑃 = 𝑃𝐷 for 𝐷 =
𝑑𝑖𝑎𝑔{𝜆1, ⋯ , 𝜆𝑛}. That is 𝐷 = 𝑃 −1𝐴𝑃 where 𝑃 = 𝑃𝑆←𝐵.

• Conditions of diagonalizability (for both real and complex matrices):

– 𝐴 ∈ 𝕄𝑛×𝑛 is diagonalizable if and only if 𝐴 has 𝑛 linearly independent eigen-
vectors.

– 𝐴 is diagonalizable if and only if the sum of dimensions of distinct eigenspaces
(a.k.a geometric multiplicities) is equal to 𝑛.

– 𝐴 is diagonalizable if and only if for each eigenvalue, its algebraic multiplicity
equals its geometric multiplicity.

∗ In particularly, if 𝐴 has 𝑛 distinct eigenvalues, i.e., if all eigenvalues of
𝐴 are distinct (all eigenvalues having algebraic multiplicity 1), then 𝐴 is
diagonalizable.

∗ Geometric multiplicity ≤ Algebraic multiplicity.

• Methods of diaonalizability:

– First, find the eigenvalues of 𝐴 by computing the characteristic polynomial

𝑃𝐴(𝜆) = 𝑑𝑒𝑡 (𝜆𝐼 − 𝐴) = 0

– Then for each eigenvalue 𝜆, find a basis for the corresponding eigenspace

𝐸𝜆 = {v ∶ 𝐴v = 𝜆v} = 𝑛𝑢𝑙𝑙 (𝜆𝐼 − 𝐴).

by solving the corresponding linear system (𝜆𝐼 − 𝐴)x = 0.
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– Putting all 𝑛 basis vectors for all eigenspaces together to form the transition
matrix 𝑃 (from the basis formed by these basis vectors to the standard basis).

– And 𝑃 can diagonalize 𝐴 in the sense 𝑃 −1𝐴𝑃 = 𝐷 where 𝐷 is diagonal with
diagonal entries being the eigenvalues (counted with multiplicity) that are so
arranged in order of the corresponding eigenvectors in 𝑃 .

• Orthogonal and Unitary Diagonalization

– If we can find an orthogonal 𝑃 such that 𝑃 𝑇 𝐴𝑃 = 𝐷, we say that 𝐴 is
orthogonally diagonalizable. This amounts saying we can choose an or-
thonormal basis 𝐵 = {v1, ⋯ , v𝑛} for ℝ𝑛 such that 𝐴v𝑖 = 𝜆𝑖v𝑖 for some
scalars 𝜆𝑖.

∗ A real matrix 𝐴 is orthogonally diagonalizable if and only if 𝐴 is sym-
metric, i.e., 𝐴𝑇 = 𝐴.

∗ For symmetric 𝐴, all its eigenvalues are real, and the eigenvectors corre-
sponding to different eigenvalues are orthogonal.

– If we can find an unitary 𝑃 such that 𝑃 ∗𝐴𝑃 = 𝐷, we say that 𝐴 is unitarily
diagonalizable. This amounts saying we can choose an orthonormal basis
𝐵 = {v1, ⋯ , v𝑛} for ℂ𝑛 such that 𝐴v𝑖 = 𝜆𝑖v𝑖 for some scalars 𝜆𝑖.

∗ A complex matrix 𝐴 is unitarily diagonalizable if and only if 𝐴 is Herim-
itian, i.e., 𝐴∗ = 𝐴.

∗ For Hermitian 𝐴, all its eigenvalues are real, and the eigenvectors corre-
sponding to different eigenvalues are orthogonal.

• Methods of Orthogonal (Unitary) Diagonalization:

– First, find all eigenvalues of 𝐴 by computing the characteristic polynomial.

– Find a basis for each eigenspace. It must be an orthogonal basis.

– Putting the basis vectors for all distinct eigenspaces together, and apply the
Gram-Schmidt process to get an orthonormal basis.

– Using these basis as columns of an invertible 𝑃 (which must be orthogonal
in the real case, and unitary in the complex case).

– 𝑃 computed as above will orthogonally (unitarily) diagonalize 𝐴.
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5 Matrix Seen In Itself

• For 𝐴 ∈ 𝕄𝑚×𝑛, the space spanned by its rows (columns) is called the row (column)
space of 𝐴, denoted by 𝑟𝑜𝑤 (𝐴) and 𝑐𝑜𝑙 (𝐴) respectively.

• 𝑑𝑖𝑚 𝑟𝑜𝑤 (𝐴) = 𝑑𝑖𝑚 𝑐𝑜𝑙 (𝐴) =∶ 𝑟𝑎𝑛𝑘 (𝐴).

• 𝐴 is invertible if and only if it is of full rank.

• Elementary row and column operations do not alter the rank of a matrix.

– If 𝑅 is a reduced row echelon form of 𝐴, then

𝑟𝑎𝑛𝑘 (𝐴) = 𝑟𝑎𝑛𝑘 (𝑅) = number of nonzero rows in R = number of leading 1’s in 𝑅

– If 𝑟𝑎𝑛𝑘 (𝐴) = 𝑟 then ∃ invertible 𝑃 and 𝑄 such that 𝑃𝐴𝑄 = [ 𝐼𝑟 0
0 0

]

• 𝐴x = b is solvable if and only if 𝑟𝑎𝑛𝑙 (𝐴) = 𝑟𝑎𝑛𝑘 (𝐴|b); if and only if b ∈ 𝑐𝑜𝑙 (𝐴).

• For any matrix 𝐴, 𝑟𝑎𝑛𝑘 (𝐴) = 𝑟𝑎𝑛𝑘 (𝐴𝑇 ) = 𝑟𝑎𝑛𝑘 (𝐴𝐴𝑇 ) = 𝑟𝑎𝑛𝑘 (𝐴𝑇 𝐴).

• 𝑟𝑜𝑤 (𝐴)⟂ = 𝑛𝑢𝑙𝑙 (𝐴) and 𝑐𝑜𝑙 (𝐴)⟂ = 𝑛𝑢𝑙𝑙 (𝐴𝑇 )

• 𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝐴) ∶= 𝑑𝑖𝑚 𝑛𝑢𝑙𝑙 (𝐴) = 𝑑𝑖𝑚 {x ∶ 𝐴x = 0}.

• Fundamental relation: For 𝐴 ∈ 𝕄𝑚×𝑛, we have

𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝐴) + 𝑟𝑎𝑛𝑘 (𝐴) = 𝑛

– Viewing 𝐴 as matrix transformation 𝑇𝐴 ∶ ℝ𝑛 → ℝ𝑚, the above relation is the
same as 𝑑𝑖𝑚 𝑘𝑒𝑟 (𝑇𝐴) + 𝑑𝑖𝑚 𝑅𝑎𝑛𝑔𝑒 (𝑇𝐴) = 𝑛.

• QR-decomposition: If 𝐴 is an 𝑚 × 𝑛 matrix with linearly independent column
vectors, i.e., full column rank (列满秩) then 𝐴 can be factored as 𝐴 = 𝑄𝑅 where
𝑄 is an 𝑚 × 𝑛 matrix with orthonormal column vectors, and 𝑅 is an 𝑛 × 𝑛
invertible upper triangular matrix. In particularly,

:::::
every

:::::::::
invertible

:::::::
matrix

::::
has

:
a

::::::::::::::::::
QR-decomposition.

• If 𝐴 ∈ 𝕄𝑚×𝑛, and if 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 ≥ 0 are the eigenvalues of 𝐴𝑇 𝐴, then the
numbers

𝜎1 = √𝜆1, 𝜎2 = √𝜆2, ⋯ , 𝜎𝑛 = √𝜆𝑛
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are called the (singular values) 奇异值 of 𝐴.

• Singular Value Decomposition (SVD) Expanded Form: If 𝐴 is an 𝑚 × 𝑛
matrix of rank 𝑘, then 𝐴 can be factored as

𝐴 = 𝑈Σ𝑉 𝑇 = [u1 u2 ⋯ u𝑘 | u𝑘+1 ⋯ u𝑚]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜎1 0 ⋯ 0
0 𝜎2 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ 𝜎𝑘

0𝑘×(𝑛−𝑘)

0(𝑚−𝑘)×𝑘 0(𝑚−𝑘)×(𝑛−𝑘)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v𝑇
1

v𝑇
2
⋮

v𝑇
𝑘

v𝑇
𝑘+1
⋮

v𝑇
𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

in which 𝑈 , Σ and 𝑉 have sizes 𝑚 × 𝑚, 𝑚 × 𝑛 and 𝑛 × 𝑛 respectively, and in
which:

a ). 𝑉 = [v1 v2 ⋯ v𝑛] orthogonally diagonalizes 𝐴𝑇 𝐴.

b ). The nonzero diagonal entries of Σ are 𝜎1 = √𝜆1, 𝜎2 = √𝜆2, ⋯ , 𝜎𝑘 =
√𝜆𝑘, where 𝜆1, 𝜆2, ⋯ , 𝜆𝑘 are the nonzero eigenvalues of 𝐴𝑇 𝐴 corresponding
to the column vectors of 𝑉 .

c ). The column vectors of 𝑉 are ordered so that 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑘 > 0.

d ). u𝑖 = 𝐴v𝑖
||𝐴v𝑖|| = 1

𝜎𝑖
𝐴v𝑖 𝑖 = 1, 2, ⋯ , 𝑘

e ). {u1, u2, ⋯ , u𝑘} is an orthonormal basis for 𝑐𝑜𝑙 (𝐴).
f ). {u1, u2, ⋯ , u𝑘, u𝑘+1, ⋯ , u𝑚} is an extension of {u1, u2, ⋯ , u𝑘} to an or-

thonormal basis for ℝ𝑚.

– The reduced singular value decompositon of 𝐴 reads

𝐴 = [u1 u2 ⋯ u𝑘]⏟⏟⏟⏟⏟
𝑈1

⎡
⎢
⎢
⎢
⎣

𝜎1 0 ⋯ 0
0 𝜎2 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ 𝜎𝑘

⎤
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

Σ1

⎡
⎢
⎢
⎢
⎣

v𝑇
1

v𝑇
2
⋮

v𝑇
𝑘

⎤
⎥
⎥
⎥
⎦⏟

𝑉 𝑇
1

In this form, the sizes of 𝑈1, Σ1 and 𝑉 𝑇
1 are 𝑚×𝑘, 𝑘×𝑘 and 𝑘×𝑛 respectively.

And Σ1 is invertible. When expanding, the above can be further written as

𝐴 = 𝜎1u1v𝑇
1 + 𝜎2u2v𝑇

2 + ⋯ + 𝜎𝑘u𝑘v𝑇
𝑘
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which is called a reduced singular value expansion of 𝐴. This applies to
all matrices, whereas the spectral decomposition applies only to symmetric
matrices.

∗ Spectral decomposition for symmetric matrix: Given 𝐴 ∈ 𝕄𝑛×𝑛(ℝ)
that is symmetric, we know that ∃ orthogonal 𝑃 = [u1 ⋯ u𝑛] that diag-
onalizes 𝐴, i.e.,

𝐴 =
:::

𝑃 𝑇 𝐷𝑃 = [u1 ⋯ u𝑛]
⎡⎢⎢
⎣

𝜆1
⋱

𝜆𝑛

⎤⎥⎥
⎦

⎡⎢⎢
⎣

u𝑇
1
⋮

u𝑇
𝑛

⎤⎥⎥
⎦

=

= [𝜆1u1 ⋯ 𝜆𝑛u𝑛]
⎡⎢⎢
⎣

u𝑇
1
⋮

u𝑇
𝑛

⎤⎥⎥
⎦

= 𝜆1u1u𝑇
1 + ⋯ + 𝜆𝑛u𝑛u𝑇

𝑛
:::::::::::::::::::::::

6 Optimization by Least Square Method

The least squares problem: min∀ x∈ℝ𝑛{||b − 𝐴x||} admits solutions that are
given by x̂ such that

𝐴x̂ = 𝑝𝑟𝑜𝑗𝑐𝑜𝑙 (𝐴)b. ⟹ ||b − 𝐴x̂|| = min
∀ x∈ℝ𝑛

{||b − 𝐴x||}

Notice that such x̂, when exists, may not be unique, and any such solution is
called a least squares solution of 𝐴x = b. Each such solution x̂ has the same
error vector and thus the same least squares error.

Solving the above least squares problem is equivalent to solving the so called
normal equation: 𝐴𝑇 𝐴x = 𝐴𝑇 b. Notice that the normal equation is always
consistent even if 𝐴x = b is inconsistent. Indeed, this establishes an one to one
correspondence between the following solution sets

{ Solutions to
𝐴x = 𝑝𝑟𝑜𝑗𝑐𝑜𝑙 (𝐴)b

} 1−1⟷ { Solutions to
𝐴𝑇 𝐴x = 𝐴𝑇 b

}

And the uniqueness of least square solutions is equivalent to the uniqueness of
solutions to the associated normal system.
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– When 𝐴 is of full column rank, i.e., the column vectors of 𝐴 are linearly
independent, then 𝐴𝑇 𝐴 is invertible, and the normal equation 𝐴𝑇 𝐴x = 𝐴𝑇 b
has unique solution x̂ = (𝐴𝑇 𝐴)−1𝐴𝑇 b, thus the least squares problem
admits unique solution. In particular, the orthogonal projection 𝑝𝑟𝑜𝑗𝑐𝑜𝑙(𝐴)b
is given by 𝐴x̂ = 𝐴(𝐴𝑇 𝐴)−1𝐴𝑇 b. In general, if 𝑊 ⊆ 𝑉 is a subspace that
can be described by 𝑐𝑜𝑙 (𝐴) for some matrix 𝐴, then orthogonal projection
𝑝𝑟𝑜𝑗𝑊 is given by 𝑝𝑟𝑜𝑗𝑊 = 𝐴(𝐴𝑇 𝐴)−1𝐴𝑇

– When 𝐴 is of full column rank, by applying Gram-Schmidt process to the set
of column vectors followed by normalization, we will get the QR decompo-
sition of 𝐴, i.e., 𝐴 = 𝑄𝑅, where 𝑄 is orthogonal and 𝑅 is upper triangular,
then for each b ∈ ℝ𝑚 the system 𝐴x = b has a unique least squares solution
given by x̂ = 𝑅−1𝑄𝑇 b

Least Squares Lines of Best Fit: Suppose we want to fit a straight line
𝑦 = 𝑎 + 𝑏𝑥 to the experimentally determined points

(𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ , (𝑥𝑛, 𝑦𝑛)

Optimization Problem: min𝑎,𝑏 {∑𝑛
𝑖=1 [𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖)]2 = ∑𝑛

𝑖=1 𝑑2
𝑖 } where 𝑑𝑖 =

|𝑦𝑖−(𝑎+𝑏𝑥𝑖)| measures the error in 𝑦𝑖 at the point 𝑥𝑖, which are called the residuals
(残余).

To solve this problem, we first turn it into a linear algebra problem. If there’s no
error, we would have

⎧{{
⎨{{⎩

𝑦1 = 𝑎 + 𝑏𝑥1
𝑦2 = 𝑎 + 𝑏𝑥2

⋮
𝑦𝑛 = 𝑎 + 𝑏𝑥𝑛

Denote by y = [𝑦1 𝑦2 ⋯ 𝑦𝑛]𝑇 , v = [𝑎 𝑏]𝑇 and 𝑀 =
⎡
⎢
⎢
⎢
⎣

1 𝑥1
1 𝑥2
⋮ ⋮
1 𝑥𝑛

⎤
⎥
⎥
⎥
⎦

then the above

system can be written as 𝑀v = y.

When the data {(𝑥𝑖, 𝑦𝑖)} are not co-linear (共线), then there is NO v = [𝑎 𝑏]𝑇
that solves 𝑀v = y.
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However, we can seek the least squares solutions that always exist. The least
squares error in this case is given by

𝑒 = ||y−𝑀v|| =
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

⎡
⎢
⎢
⎢
⎣

𝑦1 − (𝑎 + 𝑏𝑥1)
𝑦2 − (𝑎 + 𝑏𝑥2)

⋮
𝑦𝑛 − (𝑎 + 𝑏𝑥𝑛)

⎤
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

= √sum of the squares of the data errors

Thus, the least squares solution of 𝑀v = y will yield the least squares line of best
fit. We consider the normal equation associated to 𝑀v = y.

𝑀𝑇 𝑀v = 𝑀𝑇 y

𝑀𝑇 𝑀 = [ 1 1 ⋯ 1
𝑥1 𝑥2 ⋯ 𝑥𝑛

]
⎡
⎢
⎢
⎢
⎣

1 𝑥1
1 𝑥2
⋮ ⋮
1 𝑥𝑛

⎤
⎥
⎥
⎥
⎦

= [ 𝑛 ∑𝑛
𝑖=1 𝑥𝑖

∑𝑛
𝑖=1 𝑥𝑖 ∑𝑛

𝑖=1 𝑥2
𝑖

]

So 𝑑𝑒𝑡(𝑀𝑇 𝑀) ≠ 0 when 𝜎2 ≠ 0, i.e., there is error. In this case, the normal
equation has unique solution, thus we have unique line of best fit given by

𝑦 = 𝑎∗ + 𝑏∗𝑥 where v∗ = [ 𝑎∗

𝑏∗ ] = (𝑀𝑇 𝑀)−1𝑀𝑇 y.

The above can be generalized to the case when we need to find a polynomial
𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑚𝑥𝑚 that best fit the data {(𝑥1, 𝑦1), (𝑥2, 𝑦𝑛), ⋯ , (𝑥𝑛, 𝑦𝑛)}.
That is, find 𝑎0, 𝑎1, ⋯ , 𝑎𝑚 such that the following quantity is minimized

𝑒𝑟𝑟𝑜 =
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

⎡
⎢
⎢
⎢
⎣

𝑦1 − 𝑎0 − 𝑎1𝑥1 − ⋯ − 𝑎𝑚𝑥𝑚
1

𝑦2 − 𝑎0 − 𝑎1𝑥2 − ⋯ − 𝑎𝑚𝑥𝑚
2

⋮
𝑦𝑛 − 𝑎0 − 𝑎1𝑥𝑛 − ⋯ − 𝑎𝑚𝑥𝑚

𝑛

⎤
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
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That is we need to find the least squares solutions to the following system

⎧{{
⎨{{⎩

𝑎0 + 𝑎1𝑥1 + ⋯ + 𝑎𝑚𝑥𝑚
1 = 𝑦1

𝑎0 + 𝑎1𝑥2 + ⋯ + 𝑎𝑚𝑥𝑚
2 = 𝑦2

⋮
𝑎0 + 𝑎1𝑥𝑛 + ⋯ + 𝑎𝑚𝑥𝑚

𝑛 = 𝑦𝑛

⟺
⎡
⎢
⎢
⎢
⎣

1 𝑥1 ⋯ 𝑥𝑚
1

1 𝑥2 ⋯ 𝑥𝑚
2

⋮ ⋮ ⋮
1 𝑥𝑛 ⋯ 𝑥𝑚

𝑛

⎤
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀

⎡
⎢
⎢
⎢
⎣

𝑎0
𝑎1
⋮

𝑎𝑚

⎤
⎥
⎥
⎥
⎦⏟

x

=
⎡
⎢
⎢
⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤
⎥
⎥
⎥
⎦⏟

y

which is equivalent to solving the corresponding normal equation：𝑀𝑇 𝑀x = 𝑀𝑇 y.

7 SVD and the “Big Picture”

Given 𝐴 ∈ 𝕄𝑚×𝑛(ℝ). 𝐴 can be viewed as a linear transformation from ℝ𝑛 to ℝ𝑚

by left multiplication; similarly 𝐴𝑇 can be viewed as a linear transformation from ℝ𝑚

to ℝ𝑛.

ℝ𝑛 ℝ𝑚

ℝ𝑛 ℝ𝑚

𝑇𝐴

𝑇𝐴𝑇

We know that the fundamental facts about the pair of maps 𝑇𝐴, 𝑇𝐴𝑇 are given as
follows:

𝑑𝑖𝑚 𝑘𝑒𝑟 (𝑇𝐴) + 𝑑𝑖𝑚 𝑅(𝑇𝐴) = 𝑑𝑖𝑚 (ℝ𝑛) = 𝑛

𝑑𝑖𝑚 𝑘𝑒𝑟 (𝑇𝐴𝑇 ) + 𝑑𝑖𝑚 𝑅(𝑇𝐴𝑇 ) = 𝑑𝑖𝑚 (ℝ𝑚) = 𝑚

In terms of the language of matrix, the above become

𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝐴) + 𝑟𝑎𝑛𝑘 (𝐴) = 𝑛; 𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝐴𝑇 ) + 𝑟𝑎𝑛𝑘 (𝐴𝑇 ) = 𝑚 (∗)

Of course we know that 𝑟𝑎𝑛𝑘 (𝐴) = 𝑟𝑎𝑛𝑘 (𝐴𝑇 ) (i.e., the row rank equals the column
rank), that the above two equations can be combined into one identity (recall that we
have called it the “baby index theorem”)

𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝐴) − 𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝐴𝑇 ) = 𝑛 − 𝑚

which gives the full information about the solvability of the linear system 𝐴x = b.

Next, we endow ℝ𝑛 and ℝ𝑚 with the standard inner product structure, then we
have the notion of orthogonal complement of a subspace. And we know the following
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important facts:

𝑛𝑢𝑙𝑙 (𝐴)⟂ = 𝑐𝑜𝑙 (𝐴𝑇 ); 𝑛𝑢𝑙𝑙 (𝐴𝑇 )⟂ = 𝑐𝑜𝑙 (𝐴)

As we know that if 𝑈 ⊆ 𝑉 , then 𝑑𝑖𝑚 𝑈 +𝑑𝑖𝑚 𝑈⟂ = 𝑑𝑖𝑚 𝑉 , thus by applying “dim”
on both sides of the above orthogonal relation, we get the fundamental relations (∗).

The above discussion can be “encoded” into the following picture, which we call
“big picture”.

ℝ𝑛 ℝ𝑚

𝑐𝑜𝑙 (𝐴𝑇 )
𝑐𝑜𝑙(𝐴)

𝑛𝑢𝑙𝑙(𝐴) 𝑛𝑢𝑙𝑙 (𝐴𝑇 )

𝑛𝑢𝑙𝑙(𝐴)⟂ = 𝑐𝑜𝑙 (𝐴𝑇 ) 𝑛𝑢𝑙𝑙 (𝐴𝑇 )⟂ = 𝑐𝑜𝑙(𝐴)

𝑇𝐴

𝑇𝐴𝑇
𝑘𝑒𝑟 (𝑇𝐴) = 𝑛𝑢𝑙𝑙 (𝐴)

𝑅 (𝑇𝐴) = 𝑐𝑜𝑙 (𝐴)

𝑘𝑒𝑟 (𝑇𝐴𝑇 ) = 𝑛𝑢𝑙𝑙 (𝐴𝑇 )

𝑅 (𝑇𝐴𝑇 ) = 𝑐𝑜𝑙 (𝐴𝑇 )

In this framework, SVD for 𝐴 turns to be an algorithm for computing all ingredients
contained in the above “big picture”.

𝐴 = 𝑈Σ𝑉 𝑇 = [u1 ⋯ u𝑘 | u𝑘+1 ⋯ u𝑚]
⎡
⎢
⎢
⎢
⎣

𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑘

0𝑘×(𝑛−𝑘)

0(𝑚−𝑘)×𝑘 0(𝑚−𝑘)×(𝑛−𝑘)

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v𝑇
1
⋮

v𝑇
𝑘

v𝑇
𝑘+1
⋮

v𝑇
𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then we claim that

• {u1, ⋯ , u𝑘} is an orthonormal basis for 𝑐𝑜𝑙(𝐴).

• {u𝑘+1, ⋯ , u𝑚} is an orthonormal basis for 𝑐𝑜𝑙(𝐴)⟂ = 𝑛𝑢𝑙𝑙(𝐴).

• {v𝑘+1, ⋯ , v𝑛} is an orthonormal basis for 𝑛𝑢𝑙𝑙(𝐴).

• {v1, ⋯ , v𝑘} is an orthonormal basis for 𝑛𝑢𝑙𝑙(𝐴)⟂ = 𝑐𝑜𝑙(𝐴𝑇 ).
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Explanation: Recall that {v1, ⋯ , v𝑘, v𝑘+1, ⋯ , v𝑛} and ℝ𝑛 is an orthonormal basis
for ℝ𝑛, and {u1, ⋯ , u𝑘, u𝑘+1, ⋯ , u𝑚} is an orthonormal basis for ℝ𝑚 such that

𝐴𝑇 𝐴v𝑖 = 𝜎2
𝑖 v𝑖, 𝑖 = 1, ⋯ , 𝑘; 𝐴𝑇 𝐴v𝑗 = 0, 𝑗 = 𝑘 + 1, ⋯ , 𝑛

As 𝑛𝑢𝑙𝑙(𝐴𝑇 𝐴) = 𝑛𝑢𝑙𝑙(𝐴), we also have 𝐴v𝑗 = 0, 𝑗 = 𝑘 + 1, ⋯ , 𝑛.

Also recall that u𝑖 = 𝐴v𝑖
||𝐴v𝑖|| = 𝐴v𝑖

𝜎𝑖
, 𝑖 = 1, ⋯ , 𝑘, and {u1, ⋯ , u𝑘; u𝑘+1, ⋯ , u𝑚} is an

extension to an orthonormal basis for ℝ𝑚.

In particularly, we have 𝐴v𝑖 = 𝜎𝑖u𝑖, 𝑖 = 1, ⋯ , 𝑘. As 𝜎𝑗 = 0 for 𝑗 = 𝑘 + 1, ⋯ , 𝑛,
and 𝐴v𝑗 = 0, 𝑗 = 𝑘 + 1, ⋯ , 𝑛, we can also write 𝐴v𝑖 = 𝜎𝑖u𝑖, for all 𝑖.

Besides one can prove that 𝐴𝐴𝑇 u𝑖 = 𝜎2
𝑖 u𝑖, ∀𝑖. Indeed, we have

𝐴𝐴𝑇 u𝑖 = 𝐴𝐴𝑇 𝐴v𝑖
𝜎𝑖

= 1
𝜎𝑖

𝐴(𝐴𝑇 𝐴v𝑖) = 1
𝜎𝑖

𝐴(𝜎2
𝑖 v𝑖) = 𝜎2

𝑖
𝐴vi
𝜎𝑖

= 𝜎2
𝑖 u𝑖, 𝑖 = 1, ⋯ , 𝑘

For 𝑗 = 𝑘 + 1, ⋯ , 𝑛, 𝜎2
𝑗 = 0, and by SVD algorithm, we know that

𝑠𝑝𝑎𝑛{u𝑘+1, ⋯ , u𝑚} = 𝑐𝑜𝑙(𝐴)⟂ = 𝑛𝑢𝑙𝑙(𝐴𝑇 )

That is 𝐴𝑇 u𝑗 = 0, and consequently 𝐴𝐴𝑇 u𝑗 = 0, 𝑗 = 𝑘 + 1, ⋯ , 𝑚. Thus we see
that 𝐴𝐴𝑇 u𝑖 = 𝜎2

𝑖 u𝑖 holds for all 𝑖.

In conclusion, we see that v′
𝑖𝑠 are eigenvectors of 𝐴𝑇 𝐴 (with corresponding non

zero eigenvalues given by 𝜎2
1 ≥ ⋯ ≥ 𝜎2

𝑘 > 0); while u′
𝑖𝑠 are eigenvectors of 𝐴𝐴𝑇 (with

the same set of eigenvalues as that of 𝐴𝑇 𝐴). Recall that 𝐴𝐴𝑇 and 𝐴𝑇 𝐴 have the same
set of eigenvalues.

With the above preparations, SVD for 𝐴 follows easily. Indeed, we have

𝐴𝑉 = 𝐴[v1, ⋯ , v𝑘, v𝑘+1, ⋯ , v𝑛] = [𝐴v1, ⋯ , 𝐴v𝑘, 0, ⋯ , 0] = [𝜎1u1, ⋯ , 𝜎𝑘u𝑘, 0, ⋯ , 0]

= [u1, ⋯ , u𝑘; u𝑘+1, ⋯ , u𝑚]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑈

⎡
⎢
⎢
⎢
⎣

𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑘

0𝑘×(𝑛−𝑘)

0(𝑚−𝑘)×𝑘 0(𝑚−𝑘)×(𝑛−𝑘)

⎤
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Σ

Multiplying both sides by 𝑉 𝑇 from the right, and using the orthogonal property
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𝑉 𝑉 𝑇 = 𝐼𝑛, we get finally that

𝐴 = 𝐴𝑉 𝑉 𝑇 = 𝑈Σ𝑉 𝑇
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