- 1. Multiple choice questions.
- a). (5 points) Which of the following sets are vector spaces? ()
 - (A) $\{(a,b) \in \mathbb{R}^2 : b = 2a+3\} \subseteq \mathbb{R}^2$, with the usual "+" and "\cdot" as in \mathbb{R}^2 .
 - (B) $\{v \in \mathbb{R}^3 : ||v|| = 1\} \subseteq \mathbb{R}^3$, with the usual "+" and "·" as in \mathbb{R}^3 .
 - (C) {All polynomials in P_2 that are divisible by x-2}, with the usual "+" and "\cdot" as in P_2 .
 - (D) The set \mathbb{R}^2 , with addition and scalar multiplication given by: for $\mathbf{x}=(x_1,x_2)$, $\mathbf{y}=(y_1,y_2)$, and $k\in\mathbb{R}$, $\mathbf{x}+\mathbf{y}:=(x_1+2y_1,\,x_2+3y_2)$, $k\mathbf{x}:=(kx_1,kx_2)$.
- b). (5 points) Determine which of the following statements are true. ()
 - (A) If $A \in \mathbb{M}_{n \times n}$ is invertible, then its adjoint adj(A) is also invertible.
 - (B) Let $E \in \mathbb{M}_{3\times 3}$ be an elementary matrix such that det(E) = 1, then E must be the identity matrix in $\mathbb{M}_{3\times 3}$.
 - (C) Let $V \subseteq \mathbb{R}^5$ be a subspace, then any set of five vectors in V is linearly dependent.
 - (D) If $A \in \mathbb{M}_{4\times7}$, and dim(null(A)) = 3, then for all $\mathbf{b} \in \mathbb{R}^4$, the linear system $A\mathbf{x} = \mathbf{b}$ has at least one solution.
- c). (5 points) Consider a linearly independent set $\{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subseteq V$ for some $m \geq 1$, and let $\mathbf{v} \in V$. Which possible values can $\dim(\operatorname{span}\{\mathbf{v}_1 + \mathbf{v}, \dots, \mathbf{v}_m + \mathbf{v}\})$ take? ()
 - (A) m-1
- (B) m
- (C) m+1
- (D) m+2

- 2. Fill in the blanks.
- a.) (5 points) Let $A = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}$. Then $(adj(A))^{-1} = \underline{\qquad}$.
- b). (5 points) Let $B = \{1, x, x^2\}$ and $B' = \{1 + x^2, x + x^2, 1 + 2x + x^2\}$ be two basis for P_2 .

Then the transition matrix $P_{B'\leftarrow B}$ from B to B' is _____.

c.) (5 points) Let $A = [a_{ij}] \in \mathbb{M}_{n \times n}$ be given such that $a_{ij} = ij$ for all $i, j = 1, \dots, n$. Assuming that $n \geq 2$, then $\det A = \underline{\hspace{1cm}}$.

3. (10 points) Let
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
, and suppose that $A^2 - AB = I_3$. Find B .

4. Let $A \in \mathbb{M}_{4 \times 5}$ be the following matrix

$$\begin{bmatrix}
1 & 3 & 4 & -1 & 2 \\
2 & 6 & 6 & 0 & 3 \\
3 & 9 & 3 & 6 & -3 \\
3 & 9 & 0 & 9 & 0
\end{bmatrix}$$

a). (10 points) Compute r(A), nullity(A), and find basis for row(A), col(A) and null(A).

b). (5 points) Determine whether $\mathbf{u} = [2, 1, 7, -12]^T$ belongs to col(A).

c). (5 points) Find the space of all vectors in \mathbb{R}^4 that are orthogonal to col(A), i.e. the orthogonal complement of col(A) in \mathbb{R}^4 .

5. Let $\mathbb{M}_{2\times 2}$ denote the vector space of all 2×2 matrices with real entries. Consider the following two subsets of $\mathbb{M}_{2\times 2}$

$$U = \left\{ \left[\begin{array}{cc} x & -x \\ y & z \end{array} \right] : \, x,y,z \in \mathbb{R} \right\}; \qquad W = \left\{ \left[\begin{array}{cc} a & b \\ -a & c \end{array} \right] : \, a,b,c \in \mathbb{R} \right\}$$

a). (10 points) Verify that both U and W are vector subspaces of $\mathbb{M}_{2\times 2}$. And find a basis and the dimension of U and W.

b). (10 points) Find the dimensions and basis of the subspaces U+W and $U\cap W$.

7. a). (5 points) Let $\mathbf{v}_1 = [1,3,0,2]^T$, $\mathbf{v}_2 = [-1,0,1,0]^T$, $\mathbf{v}_3 = [5,9,-2,6]^T$ be vectors in \mathbb{R}^4 . Is it possible to find a set of numbers $\{a_{ij} \mid i,j=1,2,3\}$, such that the set $\{\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3\}$ is linearly independent? Here \mathbf{w}_i 's are given by

$$w_1 = a_{11}v_1 + a_{12}v_2 + a_{13}v_3$$

$$w_2 = a_{21}v_1 + a_{22}v_2 + a_{23}v_3$$

$$w_3 = a_{31}v_1 + a_{32}v_2 + a_{33}v_3$$

Please give full explanation of your claim.

b). (5 points) You should have already known the fact (from the review problems) that a matrix of of the form $A = \mathbf{u}\mathbf{v}^T$ has rank 1, here $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are any n dimensional non zero column vectors. What about the converse? That is, is it true that any rank 1 square matrix of size n can be written as $\mathbf{u}\mathbf{v}^T$ for some n dimensional non zero column vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$? Prove your claim.

8. (10 points) Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\{\mathbf{w}_1, \mathbf{w}_2\}$ be two linearly independent sets of vectors in \mathbb{R}^n for some integer n such that $\mathbf{v}_i \bullet \mathbf{w}_j = 0$ for all i = 1, 2, 3 and j = 1, 2. Is the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{w}_1, \mathbf{w}_2\}$ still linearly independent? Verify your claim.