Stı	ıdent Nar	ne:											
Stı	ıdent Nuı	mber: _											
Sch	School/Institute:												
Ye	Year of Entrance:												
ShanghaiTech University Midterm Examination													
Academic Year: <u>2021 to 2022</u> Term: <u>1</u>													
Course-offering School:IMS													
Instructor: Ye, ShuYang \square / Xue, Boqing \square / Zheng, Kai \square													
Course Name: Linear Algebra I													
Course Number: MATH1112													
Exam Instructions for Students:													
1. All examination rules must be strictly observed throughout the entire test, and any form of cheating is prohibited													
is prohibited. 2. Other than allowable materials, students taking closed-book tests must place their books, notes, tablets and any other electronic devices in places designated by the examiners.													
				_					-	caminers. They ge of materials.			
For	Marker'	s Use:				_							
	Problem	1	2	3	4	5	6	7	8	Total			
	Points	26	8	10	12	12	12	10	10	100			
	Scores												
	Recheck												
Marker's Signature:						Rechecker's Signature:							
Date:						Date:							

Specific Instructions:

- \bullet Please check the box \square behind the name of your instructor on the cover page.
- The time duration for this exam is 120 minutes.
- Computers and calculators are prohibit in the exam.
- Answers can be written in either Chinese or English.
- You may ask for direct translation during the exam, if needed.

★ For problems 2-8, please show details of calculations or deductions. A correct answer with no details can not earn points.

Notations and conventions:

- \bullet $\mathbb R$ is the set of real numbers. All the scalars here are real numbers.
- I denotes an identity matrix of suitable order.
- 0 or **0** may denote the number zero, a zero vector, or a zero matrix.
- \bullet det(A) is the determinant of a matrix A.
- tr(A) is the trace of a matrix A.
- adj(A) is the adjoint (adjunct) matrix of A.
- A linear system is said to be consistent if it has at least one solution.

- 1. Fill in the blanks.
- (1) (8 points) In \mathbb{R}^3 , let $\mathbf{u} = (1, 0, -1)$ and $\mathbf{v} = (0, 1, 2)$.
- (a) $\|\mathbf{u} \mathbf{v}\| = \underline{\hspace{1cm}}$;
- (b) $\mathbf{u} \cdot \mathbf{v} = \underline{\hspace{1cm}}$;
- (c) $\mathbf{u} \times \mathbf{v} = \underline{\hspace{1cm}}$;
- (d) The orthogonal projection of ${\bf u}$ on ${\bf v}$ is ${\rm proj}_{\bf v}({\bf u}) =$
- (2) (4 points) Let $A = \begin{bmatrix} -1 & 2 \\ & & \\ 3 & 1 \end{bmatrix}$ and p(x) = (x+1)(x-1). Then

$$p(A) = \underline{\hspace{1cm}}$$

- (3) (4 points) The inverse of the matrix $A = \begin{bmatrix} -2 & 1 \\ 5 & 3 \end{bmatrix}$ is ______
- (4) (6 points) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ & 1 & 2 & 3 \\ & 1 & 4 & 6 \end{bmatrix}$. Compute the following trace and determinant:

$$tr(A^T) = \underline{\hspace{1cm}}, \quad det(A^{2021}) = \underline{\hspace{1cm}}.$$

(5) (4 points) In \mathbb{R}^3 , suppose that Π is the plane given by 2x - y - 3z + 2 = 0. The distance between the point $P_0(1, -1, 0)$ and the plane Π is ______.

2. (8 points) Find an invertible matrix P such that PA = B, where

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \quad B = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} - a_{21} & a_{32} - a_{22} & a_{33} - a_{23} \end{bmatrix}.$$

3. (10 points) Let $c \in \mathbb{R}$ be a parameter. Suppose that

$$p_1(x) = 1 - 2x$$
, $p_2(x) = 3 + x - cx^2$, $p_3(x) = -1 + 3x^2$, $p_4(x) = 1 + 2021x + 2021^2x^2 + 2021^3x^3$.

Find a value of c such that p_1, p_2, p_3, p_4 are linearly dependent in the vector space P_{∞} of all polynomials.

- 4. A square matrix A is called idempotent if $A^2 = A$.
 - A square matrix A is said to be involutory if $A^2 = I$.
- (1) (6 points) Suppose that A, B are both idempotent. Prove that A + B is idempotent if and only if AB + BA = 0.
- (2) (6 points) Suppose that A, B are both involutory. Prove that AB is involutory if and only if AB = BA.

- 5. Let A be an $n \times n$ invertible matrix. Prove the following two statements:
- $(1) \ (6 \ points) \quad \operatorname{adj}(A^{-1}) = \left(\operatorname{adj}(A)\right)^{-1}.$
- (2) (6 points) $\operatorname{adj}(\operatorname{adj}(A)) = (\det(A))^{n-2}A.$

6. (12 points) Let $a, b \in \mathbb{R}$ be parameters. Consider the linear system of equations

$$\begin{cases}
-2x + y + z = -2 \\
x -2y +z = a \\
x +y +(b-2)z = a^2 + b
\end{cases}$$

When is the above linear system consistent? When it is consistent, find the solutions.

7. (10 points) Evaluate the following determinant of order $n \ (n \ge 2)$:

	1	2	3		n-1	n
	2	1	2	***	n-2	n-1
D =	3	2 :	1		n-3	n-2
D_n —	:	:	÷	٠.,	:	:
	n-1	n-2	n-3		1	2
	n	n-1	n-2		2	1

8. A matrix A is said to be skew-symmetric if $A^T = -A$.

Let A be an $n \times n$ skew-symmetric matrix with $n \geq 2$.

- (1) (2 points) Suppose that n is odd (i.e., n = 2k 1). Prove that det(A) = 0.
- (2) (8 points) Suppose that n is even (i.e., n = 2k) and det(A) = 0. Prove that the linear system $A\mathbf{x} = \mathbf{0}$ has at least two linearly independent solutions.