Fall 2019 Final Answer Key

Problem 1. We claim that the following formula is true.

1 n n(n2—1)
A"=10 1 n
00 1
Proof. Use induction.
(1) When n = 1, the left hand side is A! = A and the right hand side equals A also. So the

formula is true.

(2) Assume the formula is true for n, we prove it for n + 1. We assume

(n—=1)
1 n "n2
A=10 1 n
0 0 1
and compute
AL = A”A
i (n—=1)
1 n nn2 1 10
= 0 1 n 011
1 00 1 0 0 1
[ 1 1+n n+n(n21)
= 0 1 1+n
| 0 0 1
i (n+1)
1 n+1 ""2
= 0 1 n+1
_0 0 1

Hence, the formula is also true for n + 1. By the Principle of Mathematical Induction, the formula
is true for all n.

Problem 2.

(1) The reduced echelon form is

o O =
oS = O
|
oG"—‘w\m
os“'w\w
O Wl Wl

(2) The system corresponding to the reduced echelon form is

T + %x;; + %$4 + %x5 = 0
1 7 1
T — ﬁZL‘3 — EJM + EZL’5 =0
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Note that x1,z9 are basic variables and 3, x4, x5 are free variables. Solving the system, we get

5 2 1
rr = - 533‘3 — 51‘4 — §$5
— 1 7 1
T2 = T3 + 3T4 — 3T
In vector form, the solutions are
i i [ 5 ] [ 2] [ 1]
1 ~3 3 3
1 7 1
L2 12 12 3
T3 | = 3 1| +24 0| +x5 0
T4 0 1 0
xT5 0 0 1

Remark: Recall that the constant vectors on the right hand side form a basis for the null space
of A. So,

~
-
o o |—lw"“wcn
—
[ ow‘\'w\m
—_ O O Wik W
—

is a basis for the null space of A. Hence the dimension of the null space of A is 3 (also see below).

(3) No. In order for Ax = b to have a solution for every choice of b = [by,ba,bs]", A has to
have a pivot position in every row. But A has no pivot position in the 3rd row.

(4) Since A has two pivot positions, the rank of A is 2. Hence the dimension of the row space of
A = the dimension of the column space of A = rank of A = 2. By the rank theorem, the dimension
of the null space of A is 5 —2 = 3. | Rank Theorem: Let A be an m x n matrix. Then, the rank
(A) + dimNull (A) = n.] Since A" is a 5 x 3 matrix, and rank(A") = rank(A4) = 2, again by the
rank theorem, dimNull(AT) = 3—rank(A") =3 -2 = 1.

bf Remark: Note that the dimension of the null space of AT can also be calculated by using the
Fundamental Theorem of Linear Algebra:

Col(A)T = Null(A"), Row(A4)T = Null(A)
In this problem Col(A) is a subspace of R3, so dim Col(A4)* = 3 — dim Col(A4) = 3 — rank(A4) =
3 —2=1. Hence, dim Null(A") = dim Col(A4)* = 1.
Remark: Recall that the pivot columns in the original A form a basis for the column space of

A. In this problem, the first and second column are pivot columns, hence the following is a basis
for the column space of A.

3 0
{31, | -12 |}
1 —4

Recall also that the rows in an row echelon form of A form a basis for the row space of A.
Hence, the following is a basis for the row space of A.



5 21 1 11
1,0,2,2,2),(0,1, ——, ——, =
{( b 737373)7( b ) 127 1273>}
Problem 3.
(1) (2,—6,1) is a normal vector to the plane. Normalizing it, we get an unit normal vector
(2,-6,1)  (2,—6,1) 2 6 1

"l e va VT VA van
(2) Let T'(x0,y0,20) be any point on the plane. The distance from P to H is the norm of the
orthogonal projection of the vector PT = (1,2,3) — (x0, Y0, 20) onto n. The orthogonal projection
of PT onto n is

PT-n (1,2,3) -n — (x0,Y0,20) - 1
n = n
n-n n-n

—7 4 2x9 — 60 +Zon

Va1
~7+0 7

= n———m,

V4l VAL

where we have used the fact that 2z¢ — 6yg + 2o = 0, since T'(xo, Yo, 20) is a point on the plane.
. . . . . . 7 . . 7
Since n is a unit vector, the norm of the projection is NOR Thus, the distance from P to H is NOR

(3) In the parametric form for L, xg + tv, Xg is a vector whose head is on the line, and v is a

vector that is parallel to the line. Since @) is a point on the line, we can choose x¢ = OZ) = (3,1,0).
Now we need to find a vector that is parallel to L. By assumption, L is contained in the plane H,
so L is orthogonal to a normal vector of H, hence L is orthogonal to (2, —6,1). Also by assumption,
L is orthogonal to (1,2,3). Since the cross product of two vectors is orthogonal to both of these

vectors, L is parallel to the cross product of (2,—6,1) and (1,2,3). Let’s now calculate the cross

product:
i jk
2 —6 1 | =-20i—-5j+ 10k
1 2 3

So we can choose v = (—20, —5,10). Hence the equation of the line is (3,1,0) + ¢(—20, —5, 10).
Problem 4.

(1)

q(z1, 0, 3) = 21’% + 293% + 293:2)) — 2x1T9 — 22123 — 2T913
2 -1 -1 T
= [1‘1,%‘2,1‘3] -1 2 -1 T2

-1 -1 2 x3
= x!Ax,
where the symmetric matrix

2 -1 -1



(2) To find eigenvalues, we first compute the characteristic polynomial.

A—2 1 1
det(\[ — A) = 1 A—2 1
1 1 A—-2
0 1-(A—2)2 3-)
= |1 A—2 1 ((2—=X) Row 2 added to Row 1)( - Row 2 added to Row 3)
0 3—A A—3

1-(A=2)2 3-2X
- _ 3( \ ) i 5 (cofactor expansion along first column)

= [(A=22-1A=3)+(A=3)2=AA-13)?
Solving det(A — A) = 0, we get three eigenvalues, in descending order,
A1=3, =0, A3=0.

(3) We now find P whose columns consist of orthonormal eigenvectors. First, we find a basis for
the eigenspace corresponding to A\; = 3. Solving (3] — A)x = 0, we get

-1 -1
X = T9 1| +=x3 0
0 1
-1 -1
Sou = 1| and v= 0 | form a basis for the eigenspace corresponding to the eigenvalue
0 1

A1 = 3. Note that u and v are not orthogonal, so we need to use Gram-Schmidt process to get an
orthogonal basis:

u; = 1u
V- up
uz = V — uq
u; -
-1 -1 1
L i
1 0 1
So,
-1 _%
u; = 1 , U2 = —%
0 1

form an orthogonal basis for the eigenspace. Now, we normalize it to get an orthonormal basis for
the eigenspace corresponding to A\; = 3:
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Now, we find a basis for the eigenspace corresponding to A2 = A3 = 0. Solving (0 — A)x = 0, we
find

1
X =3 1
1
Normalizing the vector | 1 |, we get an orthonormal basis for the eigenspace corresponding to the
1

L
V3
eigenvalue 0:{ % } We now combine the two bases to get an orthonormal set of 3 eigenvectors:
1
V3

o E‘Hﬁ‘“
|

Wit &‘H§‘H

SES-S

Let

Sl
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1

1 1

V2 Ve

1 1
P=17"3 " 5
0 %\/g

The P is an orthogonal matrix and if we let y = P'x, or equivalently, x = Py, the quadratic form
becomes
g(1, w2, 23) = Myt + Aays + Asy3 = 3ui,

the standard form for the quadratic.
Problem 5.
(1) We only verify the positivity, and leave the rest to you.

<pr>= | W@ dr + pO)
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So, < p,p>> 0 and

<p,p>=0 <= p(z)=0forall ze€0,1] and p(0) =0

p(z) is a constant function for x € [0,1] and p(0) =0

p(z) =0 for z € [0,1]

p(k)(O) =0for k=0,1,...,n since p is a polynomial of degree at most n.

p(z) =0 for all z € (—o0,0)

[N

p is the zero vector in P,

(2) Let

po(x) =1, pi(x) =z, po(x) = z2, p3(x) = 5.

One can check that {pg,p1,p2,p3} is a basis for P3. We now use the Gram-Schmidt to get an
orthogonal basis.

qai(r) = po(z) =1
<p1’q1>

q2\T = pi\x)— ————q \x)=p1(x) =2

@ = )= 20200 = (o)

i(r) = p2(x)_w (z _M%(@
<q1,q1 > <q2,q2 >

= po(x) — g2(x) = 2 —x

u(z) = ps(z)— Mql(gg _ qu(x _ M%(@
<4q1,q1 > < q2,q2 > < g3,q3 >
3
= p3(2) — @2(2) = Jas()
1
= $3—x—§(x2—a}):x3—§x2+§x

So,

3 1
1 2 .3 292 1
{l,z,2° —z,x 5% +2x}

is an orthogonal basis for P3. We now normalize it to get an orthonormal basis:

{1,2,V3(x? — z),V20(z® — ng + %x)}

That is,
{1,2,V3(2? — x),V5(22% — 32% 4 2)}
Problem 6

(1) We need to verify that T" preserves addition and scalar multiplication. We compute directly
from the definition of T

TXH+Y)=X4+Y + (X 4+ =X 4+Y+ X" +Y =X+ X"+ VY =T(X)+T(Y)

TkX)=kX +*kX)" = kX + kX" = k(X + X ") = kT(X)
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(2) We need to express the image of each of the basis vectors under 7'. Let’s introduce some

1 0 1
, Fo= 0 , B3 = 00 , BEy= 00
00 0 0 10 0 1
One can think of F; as e; = [1,0,0,0]", and E; as e; = [0,1,0,0]", E3 as e3 = [0,0,1,0]"
and E; as e; = [0,0,0,1]T

notations:

E =

10 10 10 10
T(E) =T - i - —2F
(1) 00] [0 0] [0 0] [00 !
(01] [o1] [o1]'
T(E2)=T 0 =l ol 0 =FEy + E3
[ T Too] ool
TE)=T| | |=1] o|*|1 o| =E2+5Es
00 00 [0 0"
TE) =T, 1]:[0 o 1] = 2k

So the matrix for T is

O R = O
S = = O
N OO O

(3) We will omit the details. The characteristic polynomial of A is A(A — 2)3. So the eigenvalues
of A are 2,0. The basis for the eigenspace of A belonging to 2 is

o O O
_ = O
= o O O

0

So the corresponding basis for the eigenspace of T belonging to 2 is

{E1,Ey + E3,Ey}

Lol [ol o)

That is
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The basis for the eigenspace of A belonging to 0 is

So the corresponding basis for the eigenspace of T belonging to 2 is

{E2 — E3}

{[_(1’ 3]}

(3) We combine the bases vectors for the eigenspaces to get a basis that diagonalizes A:

That is

1 0 0 0

0 1 0 1
{0’1’0’—1}

0 0 1 0

One checks easily that this is already orthogonal. Hence, all we need to do is to normalize it to get

an orthonormal basis:

——

o o o R

oSS o

N i = =)

OE‘HE‘H o
——

The corresponding vectors in Mayxo are

1
B = 10 0 = 0 0 0 |
0 0|’ % ol o 1]’ —%
Problem 7

(a) One can use the Principle of Mathematical Induction to prove it. We omit the details.

(b) We first diagonalize
11
10

The eigenvalues of A are a = %ﬁ, 8= 1+72\/5 A basis for the eigenspace corresponding to « is

o8-

A:

«
1

and a basis for the eigenspace corresponding to 3 is

B
1




Let

P=

a f
11

Pl goamti— p| @0

0 ﬂnH P! Since P71 =

Then P is invertible and A = P

| LB _a -t B
bl -1 a V5 1 -«

At _oz 15} a™tl o0 -1 I}
B 11 0 prtt 1 —«o

I 671—&-2 o an—f—? Ban+2 o Ozﬁn+2 ]

1

V5
1

ﬁ ﬁn+1 _ an+1 BanJrl _ aBnJrl
1

V5

6n+2 _ an+2 BnJrl o an+1
Bn+1 _ anJrl Bn —am ’

where we have used the fact that a8 = —1. Hence, we have

[ Unio  Gpgl ] _ 1 [ Bn+2 _an+2 Bn+1 _anJrl ]
)

— ﬂn+1 . an+1 ﬁn —am

V5

We now express o' in terms of 5. Recall that o = 172\/5 and 8 = HT\/E So, @ = 1 — . Hence,
g" —a" = pg" — (1 — B)". Therefore,

an+1  Aan

1
NG
In particular, ajgog = %[ﬁmoo — (1 — pB)1000),

Problem 8

Before we begin, we observe that the factors in the product (A1 — A)--- (A — A) are commu-
tative. For example, (A — A)(Aol — A) = (Aol — A)(A1I — A) (Check it!).

(1) Since A is diagonalizable, there are n linearly independent eigenvectors which we denote by

[6" = (1=5)"]

Ay —

Vi,...,Vn

To simplify notations, we put
B=MI—-A)---(\I-A4)

In order to show B = 0, all we have to do is to show that for any vector vij, Bv; = 0. [Here is an
argument: Let P = [vy,...,vy]. Since the columns of P are linearly independent, P is invertible.
If we can show that Bv; = 0 for any ¢, then BP = 0. But P is invertible, multiplying each side
from right by P~!, we get BPP~! = 0. So, B = 0.] Since vj is an eigenvector, it has to belong
some eigenvalue, say A;. In other words, Av; = A;v;. Since factors in B are commutative, we move,

if necessary, the factor (A\;1 — A) to the end, so B is expressed as

B=-(\I— A)



10
So,
BVi:'”(/\jI—A)Vi:‘--()\jVi—AVi) =---0=0.
Thus B = 0 as we noted earlier.
(2) Before we begin, let’s review some basic facts about linear transformation (matrix transfor-

mation). Let K be an m x n matrix. Define a map L from R" to R™ by L(x) = Kx. L is a matrix

transformation and is also linear transformation. The following facts are important.

L is onto (surjective) < Kx = Db has a solution for each b € R™
< columns of K span R™

< Every row of K has a pivot position

L is one-to-one (injective) < Kx = 0 has only the trivial solution
< columns of K are linearly independent

< Every column of K has a pivot position

As a consequence,

L is onto (surjective) = Every row of K has a pivot position

= m<n.

L is one-to-one (injective) = Every column of K has a pivot position
= n<m.

Now, we prove the following fact: Let C' and D be n x n matrices. Then

| dim Null(C'D) < dim Null(C') + dim Null(D)|

Assume dim Null(CD) = k. If k = 0, the equality holds automatically. So we assume k > 0. Let
{v1,..., vk} denote a basis for Null(CD). Then CDv; = 0 for all . Let M = [v1,...,vk|. Then
CDM = 0. This implies that for every vector w € R, CDMw = 0, i.e., C(DMw) = 0. In
other words, DMw € Null(C'). Butw is an arbitrary vector, this means that Col(DM) C NullC.
So dim Col(DM) < dimNull(C). Note that DM is an n x k matrix, by the Rank Theorem,
k—dim Null(DM) < dim Null(C), that is , k¥ < dim Null(C') +Null(DM). Since k = dim Null(C'D),
we have

dim Null(C'D) < dim Null(C') + dim Null(DM)
What remains is to show that dim Null(DM) < dim Null(D). To show this, we use the above

observation that if there is a linear transformation from an n—dimensional vector space to an m—
dimensional vector space that is one-to-one, then n < m. So, we construct a linear transformation
L from Null(DM) to Null(D) by defining L(w) = Mw, for w € Null(DM). We want to make
sure that Mw € Null(D). But this is easy to see. In fact, since w € Null(DM), (DM)w = 0. So,
D(Mw) = 0. This means that Mw € Null(D). Now we notice that the columns of M are linearly
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independent, since those columns are basis vectors. So L is one-to-one. Hence dim Null(DM) <
dim Null(D).. This completes the proof of the boxed formula.

The formula we have just proved, when applied to product of three matrices, gives
dim Null(CDE) < dim Null(C'D) 4 dim Null(E) < dim Null(C') + dim Null(D) + dim Null(E)

So, by applying the formula repeatedly, we have

| dim Null(Cy - - C,.) < dim Null(Cy) + . .. + dim Null(C,)

We now apply the above formula to
MI—A)--- (NI —A):
dim Null[(Af — A)--- (M — A)] <dimNull(A I — A) + ... + dim Null(A\.I — A)
By assumption, (A1 — A)--- (A — A) = 0, hence dim Null[(AMI — A) -+ (\-] — A)] = n. Thus, we

have
dim Null(A 7 — A) + ... +dim Null(\. 1 — A) > n
Since A1,..., A, are distinct eigenvalues, the left hand side represents the number of linearly in-
dependent eigenvectors. So one has at least n linearly independent eigenvectors. But of course,
the number of linearly independent vectors cannot be lager than n. Hence A must have exactly n
linearly independent eigenvectors. Therefore, A is diagonalizable.
Remark: Combining the rank theorem with

dim Null(CD) < dim Null(C) + dim Null(D),

one gets

’rank(C'D) > rank(C') + rank(D) — n‘




