
Fall 2019 Final Answer Key
Problem 1. We claim that the following formula is true.

An =

 1 n n(n−1)
2

0 1 n

0 0 1


Proof. Use induction.

(1) When n = 1, the left hand side is A1 = A and the right hand side equals A also. So the
formula is true.

(2) Assume the formula is true for n, we prove it for n+ 1. We assume

An =

 1 n n(n−1)
2

0 1 n

0 0 1


and compute

An+1 = AnA

=

 1 n n(n−1)
2

0 1 n

0 0 1


 1 1 0

0 1 1

0 0 1



=

 1 1 + n n+ n(n−1)
2

0 1 1 + n

0 0 1



=

 1 n+ 1 n(n+1)
2

0 1 n+ 1

0 0 1


Hence, the formula is also true for n+ 1. By the Principle of Mathematical Induction, the formula
is true for all n.

Problem 2.
(1) The reduced echelon form is

 1 0 5
3

2
3

1
3

0 1 − 1
12 − 7

12
1
3

0 0 0 0 0


(2) The system corresponding to the reduced echelon form is

x1 + 5
3x3 + 2

3x4 + 1
3x5 = 0

x2 − 1
12x3 − 7

12x4 + 1
3x5 = 0

1
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Note that x1, x2 are basic variables and x3, x4, x5 are free variables. Solving the system, we get

x1 = − 5
3x3 − 2

3x4 − 1
3x5

x2 = 1
12x3 + 7

12x4 − 1
3x5

In vector form, the solutions are
x1

x2

x3

x4

x5

 = x3


−5

3
1
12

1

0

0

+ x4


−2

3
7
12

0

1

0

+ x5


−1

3

−1
3

0

0

1


Remark: Recall that the constant vectors on the right hand side form a basis for the null space

of A. So,

{


−5

3
1
12

1

0

0

 ,

−2

3
7
12

0

1

0

 ,

−1

3

−1
3

0

0

1

}

is a basis for the null space of A. Hence the dimension of the null space of A is 3 (also see below).
(3) No. In order for Ax = b to have a solution for every choice of b = [b1,b2,b3]

>, A has to
have a pivot position in every row. But A has no pivot position in the 3rd row.

(4) Since A has two pivot positions, the rank of A is 2. Hence the dimension of the row space of
A = the dimension of the column space of A = rank of A = 2. By the rank theorem, the dimension
of the null space of A is 5 − 2 = 3. [ Rank Theorem: Let A be an m × n matrix. Then, the rank
(A) + dimNull (A) = n.] Since A> is a 5 × 3 matrix, and rank(A>) = rank(A) = 2, again by the
rank theorem, dimNull(A>) = 3−rank(A>) = 3− 2 = 1.

bf Remark: Note that the dimension of the null space of A> can also be calculated by using the
Fundamental Theorem of Linear Algebra:

Col(A)⊥ = Null(A>), Row(A)⊥ = Null(A)

In this problem Col(A) is a subspace of R3, so dimCol(A)⊥ = 3 − dimCol(A) = 3 − rank(A) =

3− 2 = 1. Hence, dimNull(A>) = dimCol(A)⊥ = 1.
Remark: Recall that the pivot columns in the original A form a basis for the column space of

A. In this problem, the first and second column are pivot columns, hence the following is a basis
for the column space of A.

{

 3

−3
1

 ,
 0

−12
−4

}
Recall also that the rows in an row echelon form of A form a basis for the row space of A.

Hence, the following is a basis for the row space of A.
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{(1, 0, 5
3
,
2

3
,
1

3
), (0, 1,− 1

12
,− 1

12
,
1

3
)}

Problem 3.
(1) (2,−6, 1) is a normal vector to the plane. Normalizing it, we get an unit normal vector

n =
(2,−6, 1)
||(2,−6, 1)||

=
(2,−6, 1)√

41
= (

2√
41
,− 6√

41
,

1√
41

)

(2) Let T (x0, y0, z0) be any point on the plane. The distance from P to H is the norm of the
orthogonal projection of the vector ~PT = (1, 2, 3) − (x0, y0, z0) onto n. The orthogonal projection
of ~PT onto n is

~PT · n
n · n

n =
(1, 2, 3) · n− (x0, y0, z0) · n

n · n
n

=
−7 + 2x0 − 6y0 + z0√

41
n

=
−7 + 0√

41
n = − 7√

41
n,

where we have used the fact that 2x0 − 6y0 + z0 = 0, since T (x0, y0, z0) is a point on the plane.
Since n is a unit vector, the norm of the projection is 7√

41
. Thus, the distance from P to H is 7√

41
.

(3) In the parametric form for L, x0 + tv, x0 is a vector whose head is on the line, and v is a
vector that is parallel to the line. Since Q is a point on the line, we can choose x0 = ~OQ = (3, 1, 0).
Now we need to find a vector that is parallel to L. By assumption, L is contained in the plane H,
so L is orthogonal to a normal vector of H, hence L is orthogonal to (2,−6, 1). Also by assumption,
L is orthogonal to (1, 2, 3). Since the cross product of two vectors is orthogonal to both of these
vectors, L is parallel to the cross product of (2,−6, 1) and (1, 2, 3). Let’s now calculate the cross
product:  i j k

2 −6 1

1 2 3

 = −20i− 5j+ 10k

So we can choose v = (−20,−5, 10). Hence the equation of the line is (3, 1, 0) + t(−20,−5, 10).
Problem 4.
(1)

q(x1, x2, x3) = 2x21 + 2x22 + 2x23 − 2x1x2 − 2x1x3 − 2x2x3

= [x1, x2, x3]

 2 −1 −1
−1 2 −1
−1 −1 2


 x1

x2

x3


= x>Ax,

where the symmetric matrix

A =

 2 −1 −1
−1 2 −1
−1 −1 2
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(2) To find eigenvalues, we first compute the characteristic polynomial.

det(λI −A) =

∣∣∣∣∣∣∣
λ− 2 1 1

1 λ− 2 1

1 1 λ− 2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
0 1− (λ− 2)2 3− λ
1 λ− 2 1

0 3− λ λ− 3

∣∣∣∣∣∣∣ ((2− λ) Row 2 added to Row 1)( - Row 2 added to Row 3)

= −

∣∣∣∣∣ 1− (λ− 2)2 3− λ
3− λ λ− 3

∣∣∣∣∣ (cofactor expansion along first column)

= [(λ− 2)2 − 1](λ− 3) + (λ− 3)2 = λ(λ− 3)2

Solving det(λI −A) = 0, we get three eigenvalues, in descending order,

λ1 = 3, λ2 = 0, λ3 = 0.

(3) We now find P whose columns consist of orthonormal eigenvectors. First, we find a basis for
the eigenspace corresponding to λ1 = 3. Solving (3I −A)x = 0, we get

x = x2

 −11
0

+ x3

 −10
1



So u =

 −11
0

 and v =

 −10
1

 form a basis for the eigenspace corresponding to the eigenvalue

λ1 = 3. Note that u and v are not orthogonal, so we need to use Gram-Schmidt process to get an
orthogonal basis:

u1 = u

u2 = v − v · u1

u1 · u1
u1

=

 −10
1

− 1

2

 −11
0

 =

 −
1
2

−1
2

1


So,

u1 =

 −11
0

 , u2 =

 −
1
2

−1
2

1


form an orthogonal basis for the eigenspace. Now, we normalize it to get an orthonormal basis for
the eigenspace corresponding to λ1 = 3:
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{

 −
1√
2
1√
2

0

 ,

− 1√

6

− 1√
6√
2
3

}
Now, we find a basis for the eigenspace corresponding to λ2 = λ3 = 0. Solving (0I − A)x = 0, we
find

x = x3

 1

1

1



Normalizing the vector

 1

1

1

, we get an orthonormal basis for the eigenspace corresponding to the

eigenvalue 0:{


1√
3
1√
3
1√
3

} We now combine the two bases to get an orthonormal set of 3 eigenvectors:

{

 −
1√
2
1√
2

0

 ,

− 1√

6

− 1√
6√
2
3

 ,


1√
3
1√
3
1√
3

}
Let

P =


− 1√

2
− 1√

6
1√
3

− 1√
2
− 1√

6
1√
3

0
√

2
3

1√
3

 .
The P is an orthogonal matrix and if we let y = P>x, or equivalently, x = Py, the quadratic form
becomes

q(x1, x2, x3) = λ1y
2
1 + λ2y

2
2 + λ3y

2
3 = 3y21,

the standard form for the quadratic.
Problem 5.
(1) We only verify the positivity, and leave the rest to you.

< p, p >=

∫ 1

0
[p′(x)]2 dx + [p(0)]2
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So, < p, p >≥ 0 and

< p, p >= 0 ⇐⇒ p′(x) = 0 for all x ∈ [0, 1] and p(0) = 0

⇐⇒ p(x) is a constant function for x ∈ [0, 1] and p(0) = 0

⇐⇒ p(x) = 0 for x ∈ [0, 1]

⇐⇒ p(k)(0) = 0 for k = 0, 1, . . . , n since p is a polynomial of degree at most n.

⇐⇒ p(x) = 0 for all x ∈ (−∞,∞)

⇐⇒ p is the zero vector in Pn

(2) Let

p0(x) = 1, p1(x) = x, p2(x) = x2, p3(x) = x3.

One can check that {p0, p1, p2, p3} is a basis for P3. We now use the Gram-Schmidt to get an
orthogonal basis.

q1(x) = p0(x) = 1

q2(x) = p1(x)−
< p1, q1 >

< q1, q1 >
q1(x) = p1(x) = x

q3(x) = p2(x)−
< p2, q1 >

< q1, q1 >
q1(x)−

< p2, q2 >

< q2, q2 >
q2(x)

= p2(x)− q2(x) = x2 − x

q4(x) = p3(x)−
< p3, q1 >

< q1, q1 >
q1(x)−

< p3, q2 >

< q2, q2 >
q2(x)−

< p3, q3 >

< q3, q3 >
q3(x)

= p3(x)− q2(x)−
3

2
q3(x)

= x3 − x− 3

2
(x2 − x) = x3 − 3

2
x2 +

1

2
x

So,

{1, x, x2 − x, x3 − 3

2
x2 +

1

2
x}

is an orthogonal basis for P3. We now normalize it to get an orthonormal basis:

{1, x,
√
3(x2 − x),

√
20(x3 − 3

2
x2 +

1

2
x)}

That is,

{1, x,
√
3(x2 − x),

√
5(2x3 − 3x2 + x)}

Problem 6
(1) We need to verify that T preserves addition and scalar multiplication. We compute directly

from the definition of T .

T (X + Y ) = X + Y + (X + Y )> = X + Y +X> + Y > = X +X> + Y + Y > = T (X) + T (Y )

T (kX) = kX + (kX)> = kX + kX> = k(X +X>) = kT (X)
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(2) We need to express the image of each of the basis vectors under T . Let’s introduce some
notations:

E1 =

[
1 0

0 0

]
, E2 =

[
0 1

0 0

]
, E3 =

[
0 0

1 0

]
, E4 =

[
0 0

0 1

]

One can think of E1 as e1 = [1, 0, 0, 0]>, and E2 as e2 = [0, 1, 0, 0]>, E3 as e3 = [0, 0, 1, 0]>

and E4 as e1 = [0, 0, 0, 1]>

T (E1) = T

[
1 0

0 0

]
=

[
1 0

0 0

]
+

[
1 0

0 0

]>
= 2

[
1 0

0 0

]
= 2E1

T (E2) = T

[
0 1

0 0

]
=

[
0 1

0 0

]
+

[
0 1

0 0

]>
= E2 + E3

T (E3) = T

[
0 0

1 0

]
=

[
0 0

1 0

]
+

[
0 0

1 0

]>
= E2 + E3

T (E4) = T

[
0 0

0 1

]
=

[
0 0

0 1

]
+

[
0 0

0 1

]>
= 2E4

So the matrix for T is

A =


2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2


(3) We will omit the details. The characteristic polynomial of A is λ(λ− 2)3. So the eigenvalues

of A are 2, 0. The basis for the eigenspace of A belonging to 2 is

{


1

0

0

0

 ,


0

1

1

0

 ,


0

0

0

1

}
So the corresponding basis for the eigenspace of T belonging to 2 is

{E1, E2 + E3, E4}

That is

{

[
1 0

0 0

]
,

[
0 1

1 0

]
,

[
0 0

0 1

]
}
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The basis for the eigenspace of A belonging to 0 is

{


0

1

−1
0

}
So the corresponding basis for the eigenspace of T belonging to 2 is

{E2 − E3}

That is

{

[
0 1

−1 0

]
}

(3) We combine the bases vectors for the eigenspaces to get a basis that diagonalizes A:

{


1

0

0

0

 ,


0

1

1

0

 ,


0

0

0

1

 ,


0

1

−1
0

}
One checks easily that this is already orthogonal. Hence, all we need to do is to normalize it to get
an orthonormal basis:

{


1

0

0

0

 ,


0
1√
2
1√
2

0

 ,


0

0

0

1

 ,


0
1√
2

− 1√
2

0

}
The corresponding vectors in M2×2 are

B′ = {

[
1 0

0 0

]
,

[
0 1√

2
1√
2

0

]
,

[
0 0

0 1

]
,

[
0 1√

2

− 1√
2

0

]
}

Problem 7
(a) One can use the Principle of Mathematical Induction to prove it. We omit the details.
(b) We first diagonalize

A =

[
1 1

1 0

]
The eigenvalues of A are α = 1−

√
5

2 , β = 1+
√
5

2 . A basis for the eigenspace corresponding to α is

{

[
α

1

]
}

and a basis for the eigenspace corresponding to β is

{

[
β

1

]
}
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Let

P =

[
α β

1 1

]

Then P is invertible and A = P

[
α 0

0 β

]
P−1. So An+1 = P

[
αn+1 0

0 βn+1

]
P−1 Since P−1 =

1
α−β

[
1 −β
−1 α

]
= 1√

5

[
−1 β

1 −α

]
. Hence,

An+1 =
1√
5

[
α β

1 1

][
αn+1 0

0 βn+1

][
−1 β

1 −α

]

=
1√
5

[
βn+2 − αn+2 βαn+2 − αβn+2

βn+1 − αn+1 βαn+1 − αβn+1

]

=
1√
5

[
βn+2 − αn+2 βn+1 − αn+1

βn+1 − αn+1 βn − αn

]
,

where we have used the fact that αβ = −1. Hence, we have[
an+2 an+1

an+1 an

]
=

1√
5

[
βn+2 − αn+2 βn+1 − αn+1

βn+1 − αn+1 βn − αn

]
,

We now express αn in terms of β. Recall that α = 1−
√
5

2 and β = 1+
√
5

2 . So, α = 1 − β. Hence,
βn − αn = βn − (1− β)n. Therefore,

an =
1√
5
[βn − (1− β)n]

In particular, a1000 = 1√
5
[β1000 − (1− β)1000].

Problem 8
Before we begin, we observe that the factors in the product (λ1I − A) · · · (λrI − A) are commu-

tative. For example, (λ1I −A)(λ2I −A) = (λ2I −A)(λ1I −A) (Check it!).
(1) Since A is diagonalizable, there are n linearly independent eigenvectors which we denote by

v1, . . . ,vn

To simplify notations, we put

B = (λ1I −A) · · · (λrI −A)

In order to show B = 0, all we have to do is to show that for any vector vi, Bvi = 0. [Here is an
argument: Let P = [v1, . . . ,vn]. Since the columns of P are linearly independent, P is invertible.
If we can show that Bvi = 0 for any i, then BP = 0. But P is invertible, multiplying each side
from right by P−1, we get BPP−1 = 0. So, B = 0.] Since vi is an eigenvector, it has to belong
some eigenvalue, say λj . In other words, Avi = λjvi. Since factors in B are commutative, we move,
if necessary, the factor (λjI −A) to the end, so B is expressed as

B = · · · (λjI −A)
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So,
Bvi = · · · (λjI −A)vi = · · · (λjvi −Avi) = · · ·0 = 0.

Thus B = 0 as we noted earlier.
(2) Before we begin, let’s review some basic facts about linear transformation (matrix transfor-

mation). Let K be an m×n matrix. Define a map L from Rn to Rm by L(x) = Kx. L is a matrix
transformation and is also linear transformation. The following facts are important.

L is onto (surjective) ⇔ Kx = b has a solution for each b ∈ Rm

⇔ columns of K span Rm

⇔ Every row of K has a pivot position

L is one-to-one (injective) ⇔ Kx = 0 has only the trivial solution

⇔ columns of K are linearly independent

⇔ Every column of K has a pivot position

As a consequence,

L is onto (surjective) ⇒ Every row of K has a pivot position

⇒ m ≤ n.

L is one-to-one (injective) ⇒ Every column of K has a pivot position

⇒ n ≤ m.

Now, we prove the following fact: Let C and D be n× n matrices. Then

dimNull(CD) ≤ dimNull(C) + dimNull(D)

Assume dimNull(CD) = k. If k = 0, the equality holds automatically. So we assume k > 0. Let
{v1, . . . ,vk} denote a basis for Null(CD). Then CDvi = 0 for all i. Let M = [v1, . . . ,vk]. Then
CDM = 0. This implies that for every vector w ∈ Rk, CDMw = 0, i.e., C(DMw) = 0. In
other words, DMw ∈ Null(C). Butw is an arbitrary vector, this means that Col(DM) ⊂ NullC.
So dimCol(DM) ≤ dimNull(C). Note that DM is an n × k matrix, by the Rank Theorem,
k−dimNull(DM) ≤ dimNull(C), that is , k ≤ dimNull(C)+Null(DM). Since k = dimNull(CD),
we have

dimNull(CD) ≤ dimNull(C) + dimNull(DM)

What remains is to show that dimNull(DM) ≤ dimNull(D). To show this, we use the above
observation that if there is a linear transformation from an n−dimensional vector space to an m−
dimensional vector space that is one-to-one, then n ≤ m. So, we construct a linear transformation
L from Null(DM) to Null(D) by defining L(w) = Mw, for w ∈ Null(DM). We want to make
sure that Mw ∈ Null(D). But this is easy to see. In fact, since w ∈ Null(DM), (DM)w = 0. So,
D(Mw) = 0. This means that Mw ∈ Null(D). Now we notice that the columns of M are linearly
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independent, since those columns are basis vectors. So L is one-to-one. Hence dimNull(DM) ≤
dimNull(D).. This completes the proof of the boxed formula.

The formula we have just proved, when applied to product of three matrices, gives

dimNull(CDE) ≤ dimNull(CD) + dimNull(E) ≤ dimNull(C) + dimNull(D) + dimNull(E)

So, by applying the formula repeatedly, we have

dimNull(C1 · · ·Cr) ≤ dimNull(C1) + . . .+ dimNull(Cr)

We now apply the above formula to

(λ1I −A) · · · (λrI −A) :

dimNull[(λ1I −A) · · · (λrI −A)] ≤ dimNull(λ1I −A) + . . .+ dimNull(λrI −A)
By assumption, (λ1I −A) · · · (λrI −A) = 0, hence dimNull[(λ1I −A) · · · (λrI −A)] = n. Thus, we
have

dimNull(λ1I −A) + . . .+ dimNull(λrI −A) ≥ n
Since λ1, . . . , λr are distinct eigenvalues, the left hand side represents the number of linearly in-
dependent eigenvectors. So one has at least n linearly independent eigenvectors. But of course,
the number of linearly independent vectors cannot be lager than n. Hence A must have exactly n
linearly independent eigenvectors. Therefore, A is diagonalizable.

Remark: Combining the rank theorem with

dimNull(CD) ≤ dimNull(C) + dimNull(D),

one gets
rank(CD) ≥ rank(C) + rank(D)− n


