第四章, 第五章复习自测题

1 不定项选择, Multiple Choices. 15 points

1-1 (5 points). Let V be a vector space. Determine which of the following statements are true.

- (A) Let {v₁,..., v_r} ⊂ V (r ≥ 2). If v₁ cannot be expressed as a linear combination of v₂,..., v_r, then the set {v₁,..., v_r} is always linearly independent.
- (B) Let {v₁,..., v_r} ⊂ V (r ≥ 2). If there is another subset {w₁,..., w_{r-1}} ⊂ V such that {v₁,..., v_r} ⊂ span{w₁,..., w_{r-1}}, then the set {v₁,..., v_r} is always linearly dependent.
- (C) Let {v₁,..., v_r} ⊂ V. If there is another subset {w₁,..., w_m} ⊂ V for some integer m ≥ 1 such that {v₁,..., v_r} ⊂ span{w₁,..., w_m}, then the set {v₁,..., v_r} is always linearly dependent.
- (D) For v, w₁, w₂ ∈ V, if v and w₁ are linearly independent, v and w₂ are linearly independent, w₁ and w₂ are linearly independent, then the set {v, w₁, w₂} is always also linearly independent.

1-2 (5 points). Let $\{v_1, \ldots, v_r\} \subset \mathbb{R}^n$ be a subset of vectors in \mathbb{R}^n , $1 \leq r \leq n$. Determine which of the following statements are true.

- (A) If there is a linearly independent subset {w₁,..., w_r} ⊂ ℝⁿ such that {w₁,..., w_r} ⊂ span{v₁,..., v_r}, then the set {v₁,..., v_r} is always linearly independent.
- (B) We consdier v_1, \ldots, v_r as $n \times 1$ -column vector, and define $w_1 = \begin{vmatrix} v_1 \\ 1 \end{vmatrix} \in$

$$\mathbb{R}^{n+1}, w_2 = \begin{bmatrix} v_2 \\ 2 \end{bmatrix} \in \mathbb{R}^{n+1}, \dots, w_r = \begin{bmatrix} v_r \\ r \end{bmatrix} \in \mathbb{R}^{n+1} \text{ (For example, if } n = 2 \text{ and}$$

 $w_r = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbb{R}^2 \text{ then } w_r = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbb{R}^3 \text{ (For example, if } n = 2 \text{ and}$

 $v_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \in \mathbb{R}^2$, then $w_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \in \mathbb{R}^3$). If $\{w_1, \dots, w_r\} \subset \mathbb{R}^{n+1}$ is linearly

independent, then the set $\{v_1, \ldots, v_r\}$ is always linearly independent.

- (C) Let {*w*₁,..., *w_r*} ⊂ ℝⁿ be another subset of vectors in ℝⁿ, then there always exists a linear transformation *T* : span{*v*₁,..., *v_r*} → ℝⁿ such that *T*(*v*₁) = *w*₁,..., *T*(*v_r*) = *w_r*.
- (D) If the set $\{v_1, \ldots, v_r\} \subset \mathbb{R}^n$ is linearly independent, then for any given subset

 $\{\boldsymbol{w}_1,\ldots,\boldsymbol{w}_r\} \subset \mathbb{R}^n$, there always exists a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ such that $T(\boldsymbol{v}_1) = \boldsymbol{w}_1,\ldots,T(\boldsymbol{v}_r) = \boldsymbol{w}_r$.

1-3 (5 points). Determine which of the following statements are true.

- (A) For any $A \in M_{m \times n}$ and $B \in M_{m \times n}$, we always have $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$.
- (B) For any $A \in M_{n \times n}$ and $B \in M_{n \times n}$, if A and B are similar, then A^{\top} and B^{\top} are also similar.
- (C) For anyA ∈ M_{n×n} and B ∈ M_{n×n}, if A² and B² are similar, then A and B are also similar.
- (D) Let $A, B, C \in M_{n \times n}$ be such that AB = C and B is invertible. Then rank(A) =rank(C).

2 填空题, Fill in the blanks. 15 points

2-1 (5 points). Let $V = \text{span}\{e^x, e^{-x}\} \subset C(-\infty, \infty)$ be a subspace of the vector space of all continuous functions on \mathbb{R} . The hyperbolic functions are defined by

$$\sinh(x) = \frac{e^x - e^{-x}}{2}, \quad \cosh(x) = \frac{e^x + e^{-x}}{2}.$$

Let $B = \{e^x, e^{-x}\}$ and $B' = \{\sinh(x), \cosh(x)\}$. Then the transition matrix $P_{B' \leftarrow B}$ from *B* to *B'* is equal to _____.

2-2 (5 points). Let

$$A_{1} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, A_{3} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, A_{4} = \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$$

We can show that the set $S = \{A_1, A_2, A_3, A_4\}$ is a basis of $M_{2\times 2}$. Then the coordinate vector of the matrix $A = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}$ relative to S is $[A]_S =$ ____.

2-3 (5 points). Let $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Let $P_{\infty} = \{p(x) = a_0 + a_1x + \ldots + a_nx^n : n \ge a_1 \in \mathbb{R}\}$ be the vector space of all polynomials. Define

 $0, a_0, \ldots, a_n \in \mathbb{R}$ } be the vector space of all polynomials. Define

$$V = \operatorname{span}\{p(A) = a_0 I_2 + a_1 A + \ldots + a_n A^n : p(x) \in P_\infty\} \subset M_{2 \times 2}.$$

Then $\dim(V) =$ _____.

3 10 points

Consider the bases $B = \{p_1(x), p_2(X)\}$ and $B' = \{q_1(x), q_2(x)\}$ for $P_1 = \{a_0 + a_1x : a_0, a_1 \in \mathbb{R}\}$, where

$$p_1(x) = 6 + 3x, p_2(x) = 10 + 2x, q_1(x) = 2, q_2(x) = 3 + 2x.$$

- 1. (3 points) Find the transition matrix $P_{B \leftarrow B'}$ from B' to B.
- 2. (3 points)Find the transition matrix $P_{B' \leftarrow B}$ from B to B'.
- 3. (4 points) For h(x) = -4 + x, find its coordinate vectors $[h]_B$ and $[h]_{B'}$.

4 10 points

Let $P_3 = \{a_0 + a_1x + a_2x^2 + a_3x^3 : a_0, a_1, a_2, a_3 \in \mathbb{R}\}$ and $P_2 = \{a_0 + a_1x + a_2x^2 : a_0, a_1, a_2 \in \mathbb{R}\}$. Let $T_1 : P_3 \to P_2$ be a linear transformation defined by

$$T_1(p(x)) = p'(x) + p''(x)$$

(here p'(x) denotes the derivative of p(x) and p''(x) denotes the derivative of p'(x)), and $T_2: P_2 \to P_3$ be a linear transformation defined by

$$T_2(p(x)) = xp(2x+1).$$

Let $B = \{1, x, x^2\}$ and $B' = \{1, x, x^2, x^3\}$ be the standard basis of P_2 and P_3 respectively.

- 1. (4 points) Find the expression of $(T_1 \circ T_2)(p(x))$ for $p(x) = a_0 + a_1x + a_2x^2 \in P_2$.
- 2. (6 points) Find the matrix $[T_2 \circ T_1]_{B',B'}$ by using the product of $[T_2]_{B',B}$ and $[T_1]_{B,B'}$.

5 10 points

Consider the matrix transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ whose standard matrix is

$$[T] = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}.$$

Let $B' = \{u_1, u_2\}$ be another basis of \mathbb{R}^2 , where $u_1 = (1, 1), u_2 = (1, 2)$. Find the matrix of T relative to the basis B', i.e., $[T]_{B',B'}$, and show its relation with the standard matrix [T].

6 10 points

In \mathbb{R}^3 , let

$$\boldsymbol{x}_1 = (1, -2, -5), \boldsymbol{x}_2 = (0, 8, 9),$$

and

$$y_1 = (1, 6, 4), y_2 = (2, 4, -1), y_3 = (-1, 2, 5).$$

Determine whether span $\{x_1, x_2\} = span\{y_1, y_2, y_3\}$, and explain your argument.

7 15 points

Let V be a finite dimensional vector space. Let $T : V \to V$ be a linear operator satisfying $T^3 = T \circ T \circ T = 4T$. Prove that $\ker(T) + \operatorname{RAN}(T^2) = V$, here $\ker(T)$ denotes the kernel of T, $\operatorname{RAN}(T)$ denotes the range of T.

8 15 points

Let $A \in M_{3\times 3}$ be a matrix such that its first row is nonzero, i.e., if A is expressed by

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix},$$

then $(a_{11}, a_{12}, a_{13}) \neq (0, 0, 0).$ Let $B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 10 \end{bmatrix}.$ Assume that $AB = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$

Compute the nullity of A, and find a basis of Null(A).