ENRE, FLEEIENH

1 EINIEE, Multiple Choices. 15 points

1-1 (5 points). Determine which of the following statements is/are true.

* (A)If A € M,, is an orthogonal matrix, and A € R is an eigenvalue of A, then
A=1lor\=—1.

* (B)Let A, B € M,,»,,. Then AB is invertible if and only if A and B are invertible.

* (C) Every orthogonal matrix A € M,,.,, is diagonalizable.

e (D) If A € M,«, has n linearly independent eigenvectors, then A is a symmetric

matrix.

1-2 (5 points). Determine which of the following functions (-, -) is/are inner product.
2 2 T 0 3
* (A)V =R* forxz,y € R?, (x,y) = x' Ay, where A = 5 ol

e B)V =R2 forxz,y € R? (x,y) = " Ay, where A =

¢ (OV = Myxn, for A, B eV, (A B) =u(B"A).
* D)V = P, = {ag+ a1 +axx?; ag, a1, as € R}, for p(z), q(z) € V, (p(z), ¢(z)) =
p(1)q(1) + p(2)q(2) + p(3)q(3).

1-3 (5 points). Determine which of the following properties is/are similar invariants.

* (A) rank.
* (B) The dimension of eigenspace.
* (C) Eigenvector.

* (D) Characteristic polynomial.

2 1EZSR, Fill in the blanks. 15 points

-2 1
2-1 (S points). Let A= | 0 1], then the singular values of Aare
-1 0



2-2 (5 points). If the quadratic form f(xq,z2,23) = a(2? + 23 + x3) + 42179 +
4173+ 47973 is changed to standard form f = 6y2 by the orthogonal change of variables

x = Py,thena=____.

2-3 (5 points).

Let A € M;y3 be a diagonalizable matrix: there are diagonal matrix D and invertible
matrix P such that D = P~'AP. Suppose that tr(A) = —5, and A% + 24 — 313 = 03,3

is the zero matrix. Then D = .

3 10 points

1 -1 1 2
Supposethat A= | 2 4 —-2(,B=10
-3 -3 a 0

,and A is similar to B.

S N O
ot O O

(a) (4 points) Find a and b.
(b) (6 points) Find an invertible matrix P such that B = P~'AP.

4 10 points

Consider P, with the inner product

(p(a), q(a)) = / ple)q(x)dz

1

for p(z),q(z) € P,. Apply the Gram-Schmidt process to transform the standard basis

B = {1, 2, 2z*} to an orthonormal basis of P,.

S 10 points

Consider the following quadratic form

f(x1, 20, T3, 74) = 23179 + ki + 2374 + 275, Kk ER.



(a) (3 points) Find the symmetric matrix A such that f (1, xo, 3, T4) = x ' Az, where

(b) (4 points) If 3 is an eigenvalue of A, find the value for £ and find an orthogonal
matrix P such that D = P~ AP where D is a diagonal matrix.
(c) (3 points) Decide whether A is positive definite.

6 10 points

Let A € M,, be a matrix such that ||Ax||= 1 for all unit vector x € R" (i.e.,
|z||= 1), where ||-|| is the Euclidean norm on R™. Denote the column vectors of A by
Ci,...,Cp, i.e.,

A:[cl Cy ... Cpl-

Compute ||A*%(¢; + ... + ¢,)]|-

7 15 points

Let V be a finite dimensional inner product space with inner product (-, -). Let U, W

be two subspaces of V.

(a) (5 points) Suppose that U C W, prove that W+ C U+,
(b) (5 points) Suppose that proj;; = proj;; o projy;,, prove that U C W.
(¢) (5 points) Suppose that U C W, prove that proj;; = projy;, © proj.

8 15 points

Let A € M,,. Suppose that p is the largest eigenvalue of A" A.

(a) (3 points) Prove that || Az || < /p||x|| for all z € R", where ||-|| is the Euclidean
norm on R".

(b) (5 points) Prove that if p < 1, then I,, — A is invertible.



(c) (7 points) Suppose that A is invertible. Prove that A can be written as A = RH,
where R € M,,«,, is orthogonal, H € M, ,, is symmetric and all of H’s eigenvalues

are positive.
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