

高等数学 (I)

李劈

等数等

主讲教师: 李铮

高等数学(I)

上一次课程内容回顾

第五章 积分学

第五章 积分学

5.5 定积分的计算

5.5.5 定积分的综合例题

【例题1】设函数 f(x) 在点 x=0 的邻域内可导,且 f(0)=0,

求极限
$$I = \lim_{x \to 0} \frac{\int_0^x t \cdot f(x^2 - t^2) dt}{x^4}$$
。

解: 设
$$x^2 - t^2 = u$$
, 则 $t dt = -\frac{1}{2} du$, $\int_0^x t f(x^2 - t^2) dt = -\frac{1}{2} \int_{x^2}^0 f(u) du$

FITUL
$$I = \lim_{x \to 0} \frac{\frac{1}{2} \int_0^{x^2} f(u) du}{x^4} = \lim_{x \to 0} \frac{f(x^2) \cdot x}{4x^3} = \frac{1}{4} \lim_{x \to 0} \frac{f(x^2) - f(0)}{x^2} = \frac{1}{4} f'(0)$$

【例题2】设函数 $f(x),g(x) \in R[a,b]$, 证明许瓦兹不等式:

$$\left[\int_{a}^{b} f(x) \cdot g(x) dx\right]^{2} \le \int_{a}^{b} f^{2}(x) dx \cdot \int_{a}^{b} g^{2}(x) dx \cdot \text{(Schwarz)}$$

证明: 由于 $[t \cdot f(x) + g(x)]^2 \ge 0 \Rightarrow t^2 \cdot f^2(x) + 2t \cdot f(x)g(x) + g^2(x) \ge 0$,

在 [a,b] 上积分得

$$t^{2} \cdot \int_{a}^{b} f^{2}(x) dx + 2t \cdot \int_{a}^{b} f(x) \cdot g(x) dx + \int_{a}^{b} g^{2}(x) dx \ge 0$$

由于 t 为任意实数, 所以 $\Delta \leq 0$,

即
$$[2\int_a^b f(x) \cdot g(x) dx]^2 \le 4 \cdot \int_a^b f^2(x) dx \cdot \int_a^b g^2(x) dx$$
,证毕。

【例题3】设函数f(x) 是以T=2为周期的周期函数且连续,证明:

$$G(x) = 2\int_0^x f(t) dt - x \int_0^2 f(t) dt$$
 也是以 $T = 2$ 为周期的周期函数。

证明:
$$G(x+2)-G(x)=2\int_{x}^{x+2}f(t)dt-2\int_{0}^{2}f(t)dt$$

$$[G(x+2)-G(x)]' = 2 \cdot [f(x+2)-f(x)] = 0$$

所以
$$G(x+2)-G(x)\equiv C$$
, 又 $G(0)=0$, $G(2)=0$, 故 $C=0$,

即
$$G(x+2)=G(x)$$
, 证毕。

【例题4】设函数f(x) 连续且满足 $f(x) = \ln x - 2x^2 \int_1^e \frac{f(x)}{x} dx$, 求 f(x)。

解: 当函数可积时, 定积分是一个常数!

设
$$\int_1^e \frac{f(x)}{x} dx = A$$
,则 $f(x) = \ln x - 2x^2 \cdot A$,

所以
$$A = \int_1^e \frac{\ln x - 2x^2 \cdot A}{x} dx = \frac{1}{2} (\ln x)^2 \Big|_1^e - A \cdot x^2 \Big|_1^e = \frac{1}{2} - A(e^2 - 1)$$

故
$$A = \frac{1}{2e^2}, f(x) = \ln x - \frac{1}{e^2} \cdot x^2$$
。

【例题5】求函数 $y = \int_{1}^{x^{2}} (x^{2} - t) e^{-t^{2}} dt$ 的单调区间和极值。

解:
$$y = x^2 \int_1^{x^2} e^{-t^2} dt - \int_1^{x^2} t \cdot e^{-t^2} dt$$
,

$$y' = 2x \cdot \int_{1}^{x^{2}} e^{-t^{2}} dt + x^{2} e^{-x^{4}} \cdot 2x - x^{2} e^{-x^{4}} \cdot 2x = 2x \cdot \int_{1}^{x^{2}} e^{-t^{2}} dt,$$

$$y' = 0 \Rightarrow x = 0, x = \pm 1$$
, 列表如下:

x	$(-\infty,-1)$	-1	(-1,0)	0	(0,1)	1	$(1,+\infty)$
f'(x)	_	0	+	0	_	0	+
f(x)	7	0	7	*	7	0	7

单调增区间: (-1,0),(1,+∞),

单调减区间: (-∞,-1),(0,1),

极小值
$$f_{\min}(\pm 1) = 0$$
,极大值 $f_{\max}(0) = \int_0^1 t \cdot e^{-t^2} dt = \frac{1}{2}(1 - \frac{1}{e})$ 。

【例题6】设函数 $f(x) \in D[0,1]$, 且 $f(1) = k \cdot \int_0^{\overline{k}} x \cdot e^{1-x} \cdot f(x) dx$, (k > 1)

证明: $\exists \xi \in (0,1)$, 使得 $f'(\xi) = (1-\xi^{-1})f(\xi)$ 。

证明: 作函数 $F(x)=x\cdot e^{1-x}\cdot f(x)$,则由积分中值定理得:

$$F(1) = f(1) = k \cdot \int_0^{\frac{1}{k}} F(x) dx = F(\eta), \eta \in [0, \frac{1}{k}],$$

由罗尔定理知, ∃ $\xi \in (\eta,1) \subset (0,1)$, 使得 $F'(\xi) = 0$,

$$\overline{\mathbb{III}} F'(x) = e^{1-x} \cdot f(x) - x \cdot e^{1-x} \cdot f(x) + x \cdot e^{1-x} \cdot f'(x)$$

 $e^{1-\xi} \neq 0$, 故 $f'(\xi) = (1-\xi^{-1})f(\xi)$, 证毕。

【例题7】设函数f(x)在 [0,a]上非负,且 f(0)=0,f''(x)>0,

证明:
$$\int_0^a x f(x) dx > \frac{2a}{3} \int_0^a f(x) dx.$$

证明: 作函数 $F(t) = \int_0^t x f(x) dx - \frac{2t}{3} \int_0^t f(x) dx$, 则: F(0) = 0,

$$\overline{\text{III}} \ F'(t) = t \cdot f(t) - \frac{2}{3} \int_0^t f(x) dx - \frac{2t}{3} \cdot f(t) = \frac{t}{3} \cdot f(t) - \frac{2}{3} \int_0^t f(x) dx$$

$$F'(0) = 0, \ \nabla F''(t) = \frac{1}{3} \cdot f(t) + \frac{t}{3} \cdot f'(t) - \frac{2}{3} f(t) = \frac{t}{3} \cdot f'(t) - \frac{1}{3} f(t)$$

$$F''(0) = 0, \ \ \ \ F'''(t) = \frac{1}{3} \cdot f'(t) + \frac{t}{3} \cdot f''(t) - \frac{1}{3} f'(t) > 0,$$

所以, 当
$$x>0$$
 时, $F''(t)>F''(0)=0\Rightarrow F'(t)>F'(0)=0\Rightarrow F(t)>F(0)=0$,

证毕。

【例题8】设函数f(x) 在 [a,b] 上有连续导数,证明:

$$\left|\frac{1}{b-a}\int_a^b f(x) \, \mathrm{d}x\right| + \int_a^b |f'(x)| \, \mathrm{d}x \ge \max_{a \le x \le b} |f(x)| \, \circ$$

证明:由积分中值定理知, $\exists \xi \in [a,b]$, 使得 $\frac{1}{h-a} \int_a^b f(x) dx = f(\xi)$,

而由f(x)在 [a,b] 上连续,知 $\exists x_0 \in [a,b]$,使得 $\max_{a \le x \le b} |f(x)| = |f(x_0)|$,

如果 $\xi = x_0$ 不等式显然成立;

当 $\xi \neq x_0$ 时, $\int_a^b |f'(x)| dx \ge |\int_{\xi}^{x_0} |f'(x)| dx | \ge |\int_{\xi}^{x_0} f'(x) dx| = |f(x_0) - f(\xi)|$

因此, $E \geq |f(\xi)| + |f(x_0) - f(\xi)| \geq |f(x_0)| = 右, 证毕。$

【例题9】设函数f(x)在 [0,1]上有二阶导数,且 f(0) = f(1) = 0,

当
$$x \in (0,1)$$
时, $f(x) \neq 0$, 证明: $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$ 。

证明: 由 f(x) 在 [0,1] 上连续, 知 $\exists x_0 \in [0,1]$, 使得 $\max_{0 \le x \le 1} |f(x)| = |f(x_0)|$,

显然
$$x_0 \in (0,1)$$
, 所以: $\int_0^1 |\frac{f''(x)}{f(x)}| dx \ge \frac{1}{|f(x_0)|} \int_0^1 |f''(x)| dx$,

分别在 $[0,x_0],[x_0,1]$ 应用拉格朗日定理得:

由于
$$\int_0^1 |f''(x)| dx \ge |\int_{\xi}^{\eta} |f''(x)| dx \ge |f'(\eta) - f'(\xi)|$$

$$= \left| \frac{-f(x_0)}{1 - x_0} - \frac{f(x_0)}{x_0} \right| = |f(x_0)| \cdot \frac{1}{(1 - x_0) \cdot x_0} \ge 4|f(x_0)|, \text{ iffer a property of the prop$$

【例题10】设函数f(x)在[-a,a]上有二阶连续导数,且f(0)=0,

证明: $\exists \xi \in [-a,a]$, 使得 $\int_{-a}^{a} f(x) dx = \frac{a^{3}}{2} f''(\xi)$.

证明:由一阶泰勒公式知:

$$f(x)=f(0)+f'(0)\cdot x+\frac{1}{2!}f''(\eta)\cdot x^2$$
, 其中 η 介于 $0,x$ 之间,

由已知条件得: $\int_{-a}^{a} f(x) dx = \frac{1}{2} \int_{-a}^{a} f''(\eta) \cdot x^2 dx$,

又由f(x) 二阶导数连续可得: $\exists m, M$,使得 $m \le f''(x) \le M$

所以
$$m \cdot x^2 \le f''(\eta) \cdot x^2 \le M \cdot x^2$$
, 因此 $m \cdot \frac{a^3}{3} \le \frac{1}{2} \int_{-a}^{a} f''(\eta) \cdot x^2 \, dx \le M \cdot \frac{a^3}{3}$

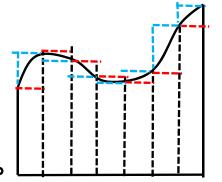
或
$$m \le \frac{\frac{1}{2} \int_{-a}^{a} f''(\eta) \cdot x^2 dx}{a^3} \le M$$
, 故 $\frac{1}{2} \int_{-a}^{a} f''(\eta) \cdot x^2 dx = \frac{a^3}{3} f''(\xi)$, 证毕。

5.5.6 定积分的近似计算*

由于定积分的几何意义是曲边梯形的面积,而存在很多函数没有初等形式的原函数,给定积分计算带来困难,如果能够计算曲边梯形的面积,那么面积的近似值就可以作为定积分的近似值。

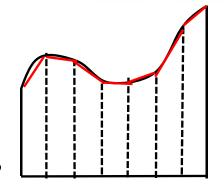
矩形法

把曲边梯形分成若干小块,用小矩形的面积 来代替小曲边梯形的面积,这种方法称为矩形法



梯形法

把曲边梯形分成若干小块,用小梯形的面积 来代替小曲边梯形的面积,这种方法称为<mark>梯形法</mark>。



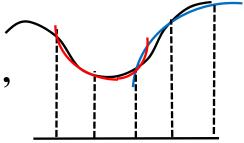
矩形法和梯形法的基本思想是在各个小段上以直线代替曲线,

为了提高精度,可用简单曲线来代替曲线。

• 抛物线法又称辛普生(Simpson)方法

用抛物线 $y = ax^2 + bx + c$ 来代替曲线 y = f(x),

注意: 需将积分区间 [a,b] 分割成 2n+1 等分,略。



5.6 定积分的应用

5.6.1 定积分的元素法

在定积分存在的条件下,可将定积分简化为两个步骤:

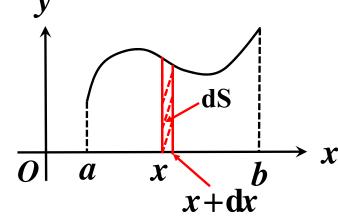
(1) 选取积分变量如 x,确定积分变量的变化区间如 [a,b],

在积分区间内任取小区间 [x,x+dx],

得到积分元素 dS = f(x)dx,

(2) 在积分区间 [a,b] 上对积分元素进行积分:

$$S = \int_a^b \mathbf{d} S = \int_a^b f(x) \, \mathbf{d} x,$$



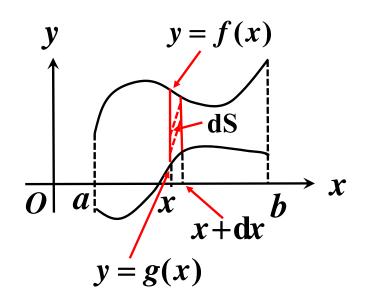
这种方法称为定积分的元素法。相当于将直线的"面积"连续相加。

立志成才报图裕氏

5.6.2 定积分的几何应用

- 1. 平面图形的面积
- (1) 直角坐标 --- " X " 型

设函数 f(x),g(x) 在 [a,b] 上连续,且 $f(x) \ge g(x), \forall x \in [a,b]$,计算由曲线 y = f(x), y = g(x) 与直线 x = a, x = b,所围平面图形的面积。



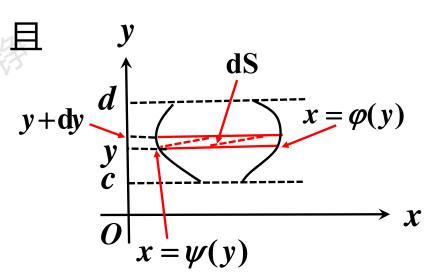
取积分变量为x,变化区间为[a,b],由元素法可得:

$$S = \int_a^b dS = \int_a^b [f(x) - g(x)] dx$$

• 平面图形的面积

(2) 直角坐标 ---"Y"型

设函数 $\varphi(y), \psi(y)$ 在 [c,d] 上连续,且 $\varphi(y) \ge \psi(y), \forall y \in [c,d]$,计算由曲线 $y = x = \varphi(y), x = \psi(y)$ 与直线 y = c, y = d,所围平面图形的面积。



取积分变量为 y 变化区间为 [c,d],由元素法可得:

$$S = \int_c^d \mathbf{d} S = \int_c^d [\varphi(y) - \psi(y)] \, \mathbf{d} y.$$

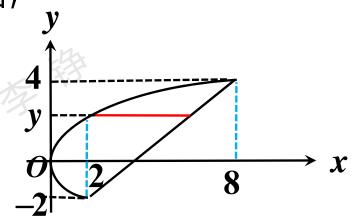
【例题11】求由抛物线 $y^2 = 2x$ 与直线 y = x - 4 所围图形的面积。

解: 两曲线的交点为: (2,-2),(8,4), 如图,

选择"Y"型计算,

$$S = \int_{-2}^{4} [(y+4) - \frac{1}{2}y^{2}] dy$$

$$= (\frac{1}{2}y^{2} + 4y - \frac{1}{6}y^{3}) \Big|_{2}^{4} = 18.$$



注意:如果选择"X"型计算,需要分两部分计算。

• 平面图形的面积

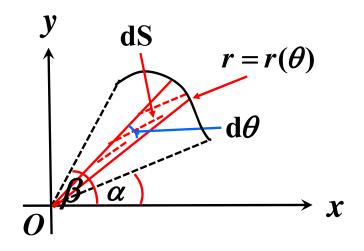
(3) 极坐标

计算由极坐标方程 $r = r(\theta)$ 表示的连续 曲线与射线 $\theta = \alpha, \theta = \beta(\alpha < \beta)$ 所围成的 曲边扇形的面积。

取积分变量为 θ ,变化区间为 $[\alpha,\beta]$,

由元素法可得: $dS = \frac{1}{2}r^2(\theta)d\theta$,

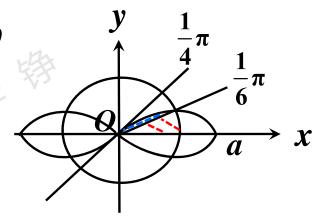
$$S = \int_{\alpha}^{\beta} dS = \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\theta) d\theta.$$



【例题12】求双纽线 $(x^2+y^2)^2=a^2(x^2-y^2)$ 在圆 $x^2+y^2=\frac{1}{2}a^2$ 内部分的面积。

解:双纽线的极坐标方程为: $r^2 = a^2 \cos 2\theta$ 圆的方程为: $r^2 = \frac{1}{2}a^2$

由对称性,只需计算第一挂限部分, 在第一挂限内的交点为: $\theta = \frac{1}{6}\pi$



注意: 双纽线有两条切线: $\theta=\pm\frac{1}{4}\pi$, 所求面积由两部分组成,

$$S = 4 \cdot \left[\frac{1}{2} \int_0^{\frac{1}{6}\pi} \frac{1}{2} a^2 d\theta + \frac{1}{2} \int_{\frac{1}{6}\pi}^{\frac{1}{4}\pi} a^2 \cos 2\theta d\theta \right] = \frac{1}{6} \pi a^2 + (1 - \frac{\sqrt{3}}{2}) a^2 .$$

2. 平行截面面积为已知的立体体积

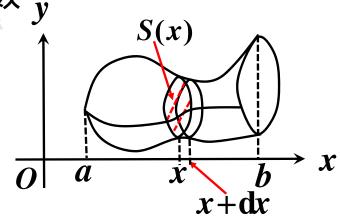
设一个空间立体 Ω ,如果用垂直于 Ox 轴的平面

去截该立体得到的截面面积是 x 的连续函数

 $S(x), x \in [a,b]$,那么该立体的体积可由定积分元素法计算得到,如图,

取积分变量为x,变化区间为[a,b],

在点x处,截面面积为:S(x),在小区间



[x,x+dx]上的积分元素(体积元素)为:dV = S(x)dx,

故所求体积为: $V = \int_a^b dV = \int_a^b S(x) dx$ 。

【例题13】有一个立体,以椭圆 $\frac{x^2}{10^2} + \frac{y^2}{5^2} = 1$ 为底,垂直于x 轴

的截面都是正方形, 求其体积。

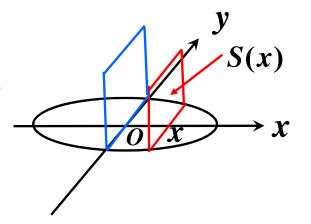
解: 取积分变量为 x, 变化区间为 [-10,10], 在点 x 处, 截面面积为:

$$S(x) = (2y)^2 = 4 \cdot 5^2 \cdot (1 - \frac{x^2}{10^2}) = 100 - x^2$$

在小区间 [x,x+dx]上的积分元素(体积元素)为:

$$dV = S(x) dx,$$

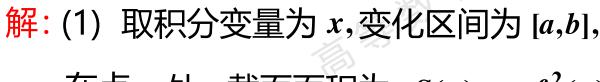
故所求体积为:
$$V = \int_{-10}^{10} dV = \int_{-10}^{10} (100 - x^2) dx = \frac{4000}{3}$$
。



• 旋转体的体积

计算由连续曲线 y = f(x) 直线 x = a, x = b 及 x 轴所围平面图形

- (1) 绕 x 轴旋转一周所得旋转体的体积;
- (2) 绕 y 轴旋转一周所得旋转体的体积。



在点x处,截面面积为: $S(x) = \pi f^{2}(x)$,

故旋转体体积为:
$$V_x = \int_a^b dV = \pi \cdot \int_a^b f^2(x) dx$$
。

y = f(x)

• 旋转体的体积

解: (2) 取积分变量为x,变化区间为[a,b],

在点x处,截面面积为: $2\pi x$

$$S(x) = 2\pi x \cdot f(x) ,$$

 $y \qquad y = f(x)$ $O \quad a \quad x \quad b \quad x$

在小区间 [x,x+dx]上的积分元素(体积元素)为:

$$dV = S(x)dx,$$

X

故旋转体体积为: $V_y = \int_a^b dV = 2\pi \cdot \int_a^b x \cdot f(x) dx$ 。

这种求体积的方法称为"薄壳法"。

定积分的应用 5.6

3. 平面曲线的弧长

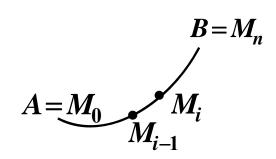
定理: 设平面曲线弧段AB 的方程为: $y = f(x), (a \le x \le b),$

其中: $f \in C^{(1)}[a,b]$,则弧段AB 是可求长的,

且其弧长为: $s = \int_a^b \sqrt{1 + f'^2(x)} \, dx$ 。

证明: 详细证明见书《微积分》(上册) p285,

下面给出证明的基本思想及主要步骤:



由定积分定义,将弧段AB分割成n小段, $M_i(x_i,y_i),(i=1,2,\cdots,n)$

小弧段 $M_{i-1}M_i$ 的长度为: $|M_{i-1}M_i| \approx \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2} = \sqrt{1 + (\frac{\Delta y_i}{\Delta x_i})^2} \cdot \Delta x_i$, 注意: $\frac{\Delta y_i}{\Delta x_i} = f'(\xi_i)$, 再求和、求极限即可得证,略。

定积分的应用 5.6

平面曲线的弧长

弧微分:
$$ds = \sqrt{(dx)^2 + (dy)^2}$$
.

(1). 直角坐标

设平面曲线方程为: y = f(x), $(a \le x \le b)$, 其中: $f \in C^{(1)}[a,b]$, 则

弧微分:
$$ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{1 + f'^2(x)} dx$$
,

弧长:
$$s = \int_a^b \sqrt{1 + f'^2(x)} \, \mathrm{d} x$$
.

【例题14】求圆 $x^2 + y^2 = \mathbb{R}^2$ 的周长。

【例题15】求曲线 $y = \int_{-\sqrt{3}}^{x} \sqrt{3-t^2} dt$ 的全长。

解:
$$y' = \sqrt{3-x^2}$$
,

$$\iiint \quad \int \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{1 + (y')^2} \, dx = \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{4 - x^2} \, dx$$

 \Leftrightarrow $x = 2\sin u$, 则:

$$S = \int_{-\frac{1}{3}\pi}^{\frac{1}{3}\pi} 4\cos^2 u \, du = 2\int_0^{\frac{1}{3}\pi} 4\cos^2 u \, du = (4u + 2\sin 2u)\Big|_0^{\frac{1}{3}\pi} = \frac{4}{3}\pi + \sqrt{3} \, .$$

平面曲线的弧长

(2). 参数方程

设平面曲线方程为:
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$
, $(\alpha \le t \le \beta)$,

其中: $\varphi(t), \psi(t) \in C^{(1)}[\alpha, \beta]$, 则

弧微分:
$$ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{\varphi'^2(t) + \psi'^2(t)} dt$$
,

弧长:
$$s = \int_{\alpha}^{\beta} \sqrt{\varphi'^2(t) + \psi'^2(t)} dt$$
。

【例题16】求星形线 $\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases}, (a > 0) \text{ 的全长.}$

解: $\varphi'(t) = -3a\cos^2 t \cdot \sin t, \psi'(t) = 3a\sin^2 t \cdot \cos t$,

所以, 弧长:

$$s = 4 \cdot \int_0^{\frac{1}{2}\pi} \sqrt{\varphi'^2(t) + {\psi'}^2(t)} \, dt = 12a \cdot \int_0^{\frac{1}{2}\pi} \sin t \cdot \cos t \, dt = 6a.$$

• 平面曲线的弧长

(3). 极坐标

设平面曲线的极坐标方程为: $r = r(\theta), (\alpha \le t \le \beta),$

其中: $r(\theta) \in C^{(1)}[\alpha, \beta]$,

将曲线化为参数方程为: $\begin{cases} x = r(\theta)\cos\theta \\ y = r(\theta)\sin\theta \end{cases}$, $(\alpha \le t \le \beta)$, 则

弧微分: $ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{r^2(\theta) + r'^2(\theta)} d\theta$

弧长: $s = \int_{\alpha}^{\beta} \sqrt{r^2(\theta) + r'^2(\theta)} dt$.

【例题17】求心脏线 $r = a(1 + \cos \theta), (a > 0)$ 的全长。

解:直接由弧长计算公式得:

$$s = 2 \cdot \int_0^{\pi} \sqrt{r^2(\theta) + r'^2(\theta)} d\theta = 2 \int_0^{\pi} \sqrt{2a^2(1 + \cos \theta)} d\theta$$

$$=4a\cdot\int_0^\pi|\cos\frac{\theta}{2}|d\theta=8a.$$

4. 旋转曲面的面积

设光滑曲线方程为 $y = f(x) (a \le x \le b)$, 求曲线绕 x 轴旋转

一周所得旋转曲面的面积。

利用元素法, 取积分变量为x,

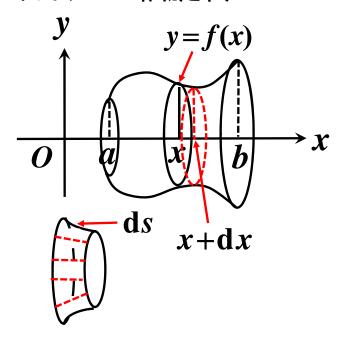
变化区间为 [a,b],在小区间 [x,x+dx] 上的

积分元素(面积元素)为: $dS = 2\pi f(x)ds$,

注意: 是一窄条的面积, 宽度为小弧长: ds

因此,旋转曲面的面积为:

$$S = \int_a^b dS = \int_a^b 2\pi f(x) ds = 2\pi \int_a^b f(x) \sqrt{1 + f'^2(x)} dx$$



【例题18】经过原点求曲线 $y = \sqrt{x-1}$ 的切线,并求由曲线、 切线及 x 轴所围平面图形绕 x 轴旋转一周 所得旋转体的表面积。

解:设切点为: $(x_0,y_0)=(x_0,\sqrt{x_0-1}),$

则切线方程为: $y-y_0=y'(x_0)(x-x_0)$

或: $y-\sqrt{x_0-1}=\frac{1}{2\sqrt{x_0-1}}(x-x_0)$, 由于切线经过原点,所以 $x_0=2$, 故切线方程为: $y=\frac{1}{2}x$,旋转曲面的表面积由两部分组成,

$$S_1 = S_{\frac{1}{1}} = 2\pi \int_1^2 \sqrt{x-1} \cdot \sqrt{1 + (\frac{1}{2\sqrt{x-1}})^2} \, dx = \pi \int_1^2 \sqrt{4x-3} \, dx = \frac{\pi}{6} (5\sqrt{5}-1),$$

$$S_2 = S_{\text{th}} = 2\pi \int_0^2 \frac{x}{2} \cdot \sqrt{1 + \frac{1}{4}} \, dx = \sqrt{5}\pi$$
, 故: $S = S_1 + S_2 = \frac{\pi}{6} (11\sqrt{5} - 1)$ 。 立志政才报告 孫氏

5.6.3 定积分的物理应用 △

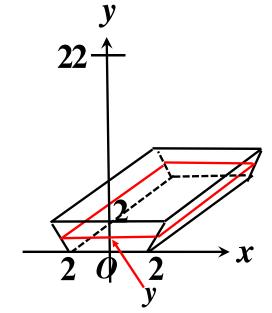
1. 变力沿直线运动作功

通过例题说明如何应用元素法解决变力沿直线作功问题。

【例题19】设一个横截面为等腰梯形的蓄水池, 梯形上底为6米,下底为4米,高为2米,水池 长为8米,蓄满了水,现要将水池中的水全部 抽到距水面20米高的水塔,问需作多少功?

解:建立如图坐标系,应用定积分元素法,

注意:变力沿直线作功问题,形象描述为" $\rho \cdot g \cdot h$ +元素法"。



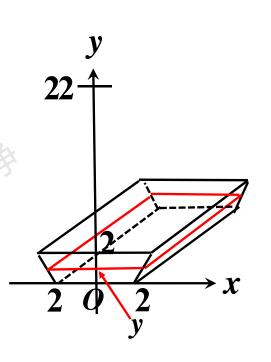
解:取积分变量为 y,变化区间为 [0,2],

在小区间 [y,y+dy] 上的积分元素为:

$$dW = \rho \cdot g \cdot (22 - y) \cdot S(y) dy,$$

其中, $S(y) = 8 \cdot 2x = 8 \cdot (y+4)$, ρ 为水密度, g 为重力加速度。

注:相当于把一层水(或冰)抽到水塔。因此,所作的功:



$$W = \int_0^2 \rho \cdot g \cdot (22 - y) \cdot 8 \cdot (y + 4) dy = 8\rho \cdot g \cdot \int_0^2 (88 + 18y - y^2) dy = \frac{4924}{3} \rho \cdot g$$

定积分的应用 5.6

2. 液体的静压力(水压力)

同样通过例题说明如何解决静压力问题。

【例题20】某个闸门的形状与大小描述如下:

以直线 l 为对称轴,闸门的上部为矩形 ABCD、下部由

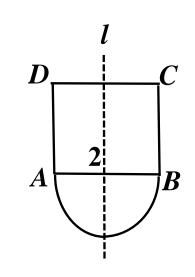
二次抛物线与线段AB所围成,其中线段AB的长度为

2米, 当水面与闸门的上端持平时, 欲使闸门矩形部分

承受的水压力与闸门下部承受的水压力之比为 5:4,

则闸门矩形部分的高应为多少米?

解: 静压力(或水压力)问题,同样可形象描述为 " $\rho \cdot g \cdot h$ +元素法 "。 立志成才报图谷园

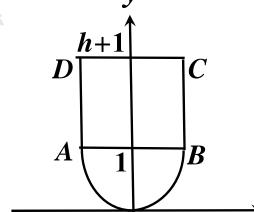


定积分的应用 5.6

解: 水压力为: $P = p \cdot S = \rho \cdot g \cdot h \cdot S$, 其中, p, ρ, g, h, S

分别为:压强、水密度、重力加速度、到水面距离、截面积。

建立如图坐标系,设抛物线方程为: $y = x^2$, 应用定积分元素法, 取积分变量为 y,



分别计算两部分承受的水压力,

矩形部分承受的水压力为:

$$P_1 = \int_1^{h+1} \rho \cdot g \cdot (h+1-y) \cdot 2 \, \mathrm{d} y = \rho \cdot g \cdot [2(h+1)y - y^2] \Big|_1^{h+1} = \rho \cdot g \cdot h^2,$$

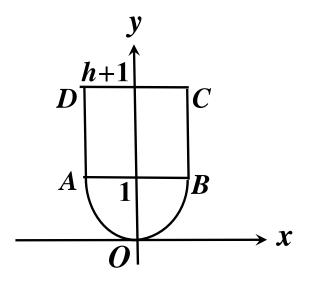
5.6 定积分的应用

解(续):

闸门下部分承受的水压力为:

$$P_{2} = \int_{0}^{1} \rho \cdot g \cdot (h+1-y) \cdot 2\sqrt{y} \, dy$$

$$= 2\rho \cdot g \cdot \left[\frac{2}{3}(h+1) \cdot y^{\frac{3}{2}} - \frac{2}{5} \cdot y^{\frac{5}{2}}\right]_{0}^{1} = 4\rho \cdot g \cdot \left(\frac{h}{3} + \frac{2}{15}\right),$$



曲题意知: $\frac{P_1}{P_2} = \frac{5}{4}$, 即: $4 \cdot \rho \cdot g \cdot h^2 = 5 \cdot 4\rho \cdot g \cdot (\frac{h}{3} + \frac{2}{15})$

解得:
$$h=2, h=-\frac{1}{3}$$
 (舍去),

故闸门矩形部分的高应为2米。

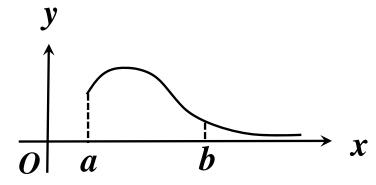
5.7 反常积分(又称广义积分)

5.7.1 无穷区间上的反常积分

定义1: 设函数 f(x) 在 $[a,+\infty)$ 上有定义,且 $\forall b > a, f \in R[a,b]$,

若极限 $\lim_{b\to +\infty} \int_a^b f(x) dx$ 存在,则称反常积分 $\int_a^{+\infty} f(x) dx$ 收敛,

反之,称反常积分 $\int_a^{+\infty} f(x) dx$ 发散。



【例题21】计算
$$\int_1^{+\infty} \frac{1}{x^2(1+x)} dx$$
。

解:由干

$$\int_{1}^{b} \frac{1}{x^{2}(1+x)} dx = \int_{1}^{b} \left[\frac{1}{x^{2}} - \frac{1}{x} + \frac{1}{1+x} \right] dx$$

$$= \left[-\frac{1}{x} - \ln x + \ln(1+x) \right]_{1}^{b} = -\frac{1}{b} + \ln \frac{1+b}{b} + 1 - \ln 2,$$

FITUL
$$\int_{1}^{+\infty} \frac{1}{x^{2}(1+x)} dx = \lim_{b \to +\infty} \int_{1}^{b} \frac{1}{x^{2}(1+x)} dx = 1 - \ln 2.$$

【例题22】计算 $\int_{1}^{+\infty} x \cdot e^{-x} dx$ 。

解: 由于
$$\int_1^b x \cdot e^{-x} dx = (-x \cdot e^{-x} - e^{-x})\Big|_1^b = -\frac{b+1}{e^b} + \frac{2}{e}$$
,

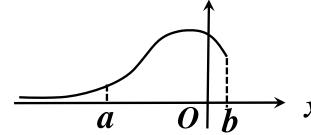
而 $\lim_{b \to +\infty} \frac{b+1}{e^b} = 0$,

所以
$$\int_{1}^{+\infty} x \cdot e^{-x} dx = \lim_{b \to +\infty} \int_{1}^{b} x \cdot e^{-x} dx = \frac{2}{e}$$
。

定义2: 设函数 f(x) 在 $(-\infty,b]$ 上有定义,且 $\forall a < b, f \in R[a,b]$,

若极限 $\lim_{a\to\infty}\int_a^b f(x) dx$ 存在,则称反常积分 $\int_{-\infty}^b f(x) dx$ 收敛, y

反之, 称反常积分 $\int_{-\infty}^{b} f(x) dx$ 发散。



定义3: 设函数 f(x) 在 $(-\infty, +\infty)$ 上有定义, 若存在常数 $c \in \mathbb{R}$,

使得反常积分 $\int_{-\infty}^{c} f(x) dx$, $\int_{c}^{+\infty} f(x) dx$ 均收敛, 则称反常积分

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x \, \, \mathbb{Q} \, \mathrm{d}x, \quad \underline{\square} \, \int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{c} f(x) \, \mathrm{d}x + \int_{c}^{+\infty} f(x) \, \mathrm{d}x,$$

反之, 称反常积分 $\int_{-\infty}^{+\infty} f(x) dx$ 发散。

【例题23】设 a,k 为常数, 且 a>0, 问 k 何值时, 反常积分

$$\int_a^{+\infty} \frac{1}{x^k} \, \mathrm{d}x \, \, 收敛?$$

解: 当 k=1 时, $\int_a^{+\infty} \frac{1}{r} dx = \ln x \Big|_a^{+\infty} = \infty$ 发散;

当
$$k \neq 1$$
 时, $\int_{a}^{+\infty} \frac{1}{x^{k}} dx = \frac{x^{1-k}}{1-k} \bigg|_{a}^{+\infty} = \begin{cases} +\infty, & k < 1 \\ -\frac{a^{1-k}}{1-k}, & k > 1 \end{cases}$

所以, 反常积分 $\int_a^{+\infty} \frac{1}{v^k} dx$ 当 k > 1 时, 收敛,

问题: 反常积分 $\int_{-\infty}^{+\infty} \frac{2x}{x^2+1} dx$ 是否收敛?

【例题24】计算
$$\int_2^{+\infty} \frac{1}{x\sqrt{x^2-1}} dx$$
。

$$\iiint \int_{2}^{+\infty} \frac{1}{x\sqrt{x^{2}-1}} dx = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{\sec t \cdot \tan t} \cdot \sec t \cdot \tan t dt = \frac{\pi}{6};$$

解法2: $\Leftrightarrow x = \frac{1}{u}$

$$\text{III} \quad \int_{2}^{+\infty} \frac{1}{x\sqrt{x^{2}-1}} \, \mathrm{d}x = \int_{\frac{1}{2}}^{0} \frac{u^{2}}{\sqrt{1-u^{2}}} \cdot \left(-\frac{1}{u^{2}}\right) \, \mathrm{d}u = \arcsin u \Big|_{0}^{\frac{1}{2}} = \frac{\pi}{6} \, .$$

注意:计算反常积分通常不需要讨论敛散性。

5.7.2 无界函数的反常积分

定义4: 设函数 f(x) 在 (a,b] 上有定义,且 $f(a^+)=\infty$ 或 $f(a+0)=\infty$,

 $\forall \varepsilon > 0, f \in R[a + \varepsilon, b],$ 若极限 $\lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) dx$ 存在,

则称反常积分 $\int_a^b f(x) dx$ 收敛,

反之, 称反常积分 $\int_a^b f(x) dx$ 发散。 $\overline{O \mid aa + \varepsilon}$

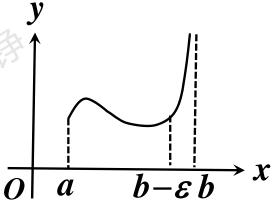


定义5: 设函数f(x)在 [a,b]上有定义,且 $f(b^-)=\infty$ 或 $f(b-0)=\infty$,

$$\forall \varepsilon > 0, f \in R[a, b - \varepsilon],$$
 若极限 $\lim_{\varepsilon \to 0^+} \int_a^{b - \varepsilon} f(x) dx$ 存在,

则称反常积分 $\int_a^b f(x) dx$ 收敛,

且
$$\int_a^b f(x) dx = \lim_{\varepsilon \to 0^+} \int_a^{b-\varepsilon} f(x) dx$$
, 反之,称反常积分 $\int_a^b f(x) dx$ 发散。



定义6: 设函数 f(x) 在 [a,c),(c,b] 上有定义,且 $f(c)=\infty$,

若反常积分 $\int_{a}^{c} f(x) dx$, $\int_{c}^{b} f(x) dx$ 均收敛,则称反常积分

$$\int_a^b f(x) dx \quad 收敛, \quad \boxed{1} \quad \int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx,$$

反之, 称反常积分 $\int_a^b f(x) dx$ 发散。

【例题25】问 k 何值时,反常积分 $\int_a^b \frac{1}{(x-a)^k} dx$ 收敛?

解: 当
$$k = 1$$
 时, $\int_a^b \frac{1}{x-a} dx = \ln(x-a) \Big|_a^b = \infty$ 发散;

所以, 反常积分
$$\int_a^b \frac{1}{(x-a)^k} dx$$
当 $k < 1$ 时, 收敛,

反常积分
$$\int_a^b \frac{1}{(x-a)^k} dx \, \text{if } k \geq 1$$
 时,发散。

【例题26】计算
$$\int_0^2 \frac{1}{\sqrt{|x^2-1|}} dx$$
。

解:
$$\int_0^2 \frac{1}{\sqrt{|x^2 - 1|}} dx = \int_0^1 \frac{1}{\sqrt{1 - x^2}} dx + \int_1^2 \frac{1}{\sqrt{x^2 - 1}} dx$$

=
$$\arcsin x \Big|_{0}^{1} + \ln |x + \sqrt{x^{2} - 1}| \Big|_{1}^{2} = \frac{\pi}{2} + \ln |2 + \sqrt{3}|$$

【例题27】计算
$$\int_1^{+\infty} \frac{1}{x\sqrt{x-1}} dx$$
。

解:
$$\Leftrightarrow x = \sec^2 t$$
,

$$\iiint_1^{+\infty} \frac{1}{x\sqrt{x-1}} dx = \int_0^{\frac{\pi}{2}} \frac{1}{\sec^2 t \cdot \tan t} \cdot 2 \sec t \cdot \sec t \cdot \tan t dt = \pi.$$

【例题28】计算
$$\int_0^{+\infty} \frac{1}{\sqrt{x} \cdot (1+\sqrt{x})(1+x)} dx$$
。

 \mathbf{M} : \diamondsuit $x = \tan^2 t$,

$$\iiint \int_0^{+\infty} \frac{1}{\sqrt{x} \cdot (1+\sqrt{x})(1+x)} dx = \int_0^{\frac{\pi}{2}} \frac{1}{\tan t \cdot (1+\tan t) \cdot \sec^2 t} \cdot 2\tan t \cdot \sec^2 t dt$$

$$=2\int_0^{\frac{\pi}{2}} \frac{1}{1+\tan t} dt = 2\int_0^{\frac{\pi}{2}} \frac{\cos t}{\cos t + \sin t} dt = \frac{\pi}{2}.$$

第五章 积分学

本次课程内容小结

下次课程内容预告

第五章 积分学

