姓名:	
学号:	
	_

上海科技大学

学院和年级:

2020-2021 学年第一学期本科生期中考试卷

开课单位:

授课教师:李铮,赵俐俐

考试科目:《高等数学 I》

课程代码:

考生须知:

1. 请严格遵守考场纪律,禁止任何形式的作弊行为。

- 2. 参加闭卷考试的考生,除携带必要考试用具外,书籍、笔记、掌上电脑和其他电子设备等物品一律按要求放在指定位置。
- 3. 参加开卷考试的考生,可以携带教师指定的材料独立完成考试,但不准相互讨论,不准交换材料。

考试成绩录入表:

题目	_	1	11	四	五	六	七	总分
计分								
复核								

评卷人签名: 复核人签名:

日期: 日期:

- 一、 选择题 (每小题 4 分, 共 20 分)
- **1.** 当 $x \to 0^+$ 时, $\sqrt{1 + x + \sqrt{x}} 1$ 与 x^k 是同阶无穷小,则 k 的值为(

- (A) 1. (B) $\frac{3}{4}$. (C) $\frac{1}{2}$. (D) $\frac{1}{4}$.
- 2. 下列函数的导函数在其定义域上有界的是(
 - (A) $\ln(x + \sqrt{x^2 + 1})$. (B) $x \ln x$. (C) $\sqrt{\frac{x^8 + 1}{x^4 + 1}}$. (D) $\sin(x^2)$.

- 3. 曲线 $(x(t), y(t)) = (\sec t, \tan t)$ 在 $t = \frac{\pi}{4}$ 处的切线方程为(

- (A) $y = \sqrt{2}x 1$. (B) $y = \frac{\sqrt{2}}{2}x$. (C) $y = -\sqrt{2}x + 3$. (D) $y = -\frac{\sqrt{2}}{2}x + 2$.
- 4. 下列极限中最小的是()
 - (A) $\lim_{n \to \infty} \sqrt[n]{n^2 + n + 2^n}$. (B) $\lim_{n \to \infty} (1 \frac{1}{n^2})^n$.
- - (C) $\lim_{x \to 0^+} \frac{\sqrt{x^2 + 4x + 5} \sqrt{5}}{x}$. (D) $\lim_{x \to 0} \frac{1 \cos x}{x \sin x}$.
- 5. 设f在[a,b]上可微,则下列论断正确的个数是(
 - (1) 开区间(a,b)内未必存在 ξ 使得 $f(b)-f(a)=f'(\xi)(b-a)$.
 - (2) 若每点的导数 f'(x) 均为有理数,则 f(x) 必然是一次函数.
 - (3) 若 f'(a)f'(b) < 0,则函数在开区间(a,b)内能取到最大值.
 - (A) $0 \uparrow$. (B) $1 \uparrow$. (C) $2 \uparrow$. (D) $3 \uparrow$.

二、 填空题(每小题 4分, 共 20分)

- 7. 函数 $f(x) = x^x + \sin x$ 在 x = 1 处的微分为______.
- 8. 函数 $f(x) = \frac{\ln \cos(x-1)}{1-\sin \frac{\pi x}{2}}$ 在 x = 1 处是________间断点.
- 9. 函数 $f(x) = x^3 12x^2 + 36$ 在 [0,10] 上的最小值为______
- 10. 极限 $\lim_{n\to\infty} (1-\frac{1}{2^2})(1-\frac{1}{3^2})\cdots(1-\frac{1}{n^2}) = ______.$

三、 极限题(每小题 8 分, 共 16 分)

11. 用极限定义证明: $\lim_{x\to 1} \frac{3-x^2}{1+x} = 1$.

12. 求极限 $\lim_{x\to+\infty} \left(1+\frac{1}{x}+\frac{\pi}{x^2}\right)^{\sin x}$.

- 四、导数计算(每小题 12分,共 24分)
- **13.** 设函数 $f(x) = x + e^x$, 记 $\varphi(x) = f^{-1}(x)$ 为 f 的反函数, 试求 $\varphi'(1)$ 和 $\varphi''(1)$.

14. 设函数 $f(x) = (x^2 + 1)e^{2x}$, 求 $f^{(n)}(x)$, 其中 $n \ge 1$.

五、解答题(每题 10 分, 共 20 分)

15. 设函数 $f(x) = \begin{cases} x^a \sin \frac{1}{x}, & x > 0 \\ bx, & x \le 0 \end{cases}$,请根据实数 a,b 讨论 f 在原点的连续性和可

导性.

16. 设函数 f 在 \mathbb{R} 上可导并且导函数有界,证明:存在正数 A,B 使得恒有 $|f(x)| \le A|x| + B$.

七、附加题(本题6分)

- **17.** 设数列 $\{x_n\}$ 满足: $x_1 = 1, x_2 = 2, x_{n+2} = \frac{1}{2}(x_{n+1} + x_n), n \ge 1$.
- (1) 证明: $\{x_n\}$ 收敛; (2) 求极限 $\lim_{n\to\infty} x_n$.